Skip to main content
Log in

Water-dispersible nanohydrogels of cross-linked polyacrylamide

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stable water-dispersible nanohydrogels of cross-linked polyacrylamide (PAAm) were obtained by batch (BP) and semicontinuous (SP) processes through inverse microemulsion polymerization using N,N'-methylenebisacrylamide (NMBAM) as cross-linking agent and bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) as surfactant. The effects of initiator type as 2,2'-Azobis(2-amidinopropane) hydrochloride (V-50), potassium persulfate (KPS), ammonium persulfate (APS), and benzoyl peroxide (BPO) on kinetics, particle size, and morphology were studied. It was observed that under the studied conditions, it is possible to form the inverse microemulsions using lower surfactant concentrations than those typically reported for microemulsión polymerization of this monomer. Z-average particle size (Dpz) of final latexes were in the range of 51 to 79 nm for BP, those corresponding to SP were in the interval of 118 to 225 nm, while Dpz of water-dispersed nanohydrogels varied from 530 to 825 nm conserving their spherical morphology. Particle size distributions of both latexes and the water-dispersed nanohydrogels were monomodal. High monomer conversions and fast polymerization rates were observed in all cases, achieving monomer-starved conditions when using low monomer addition rate in SP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ulatowska-Jarza A, Pucińska J, Wysocka-Król K, Hołowacz I, Podbielska H (2011) Nanotechnology for biomedical applications–enhancement of photodynamic activity by nanomaterials. Bull Pol Ac Tech 59(3):253–261. https://doi.org/10.2478/v10175-011-0031-0

    Google Scholar 

  2. Kiser PF, Wilson G, Needham D (1998) A synthetic mimic of the secretory granule for drug delivery. Nature 394(6692):459–462. https://doi.org/10.1038/28822

    Article  CAS  Google Scholar 

  3. Kim BS, Qiu JM, Wang JP, Taton TA (2005) Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett 5(10):1987–1991. https://doi.org/10.1021/nl0513939

    Article  CAS  Google Scholar 

  4. Liu SY, Weaver JV, Save M, Armes SP (2002) Synthesis of pH responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18(22):8350–8357. https://doi.org/10.1021/la020496t

    Article  CAS  Google Scholar 

  5. Van der Linden H, Herber S, Olthuis W, Bergveld P (2002) Development of stimulus-sensitive hydrogels suitable for actuators and sensors in microanalytical devices. Sens Mater 14(3):129–139

    Google Scholar 

  6. Rivest C, Morrison DWG, Ni B, Rubin J, Yadav V, Mahdavi A, Karp JM, Khademhosseini A (2007) Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J Mech Mater Struct 2(6):1103–1119. https://doi.org/10.2140/jomms.2007.2.1103

    Article  Google Scholar 

  7. Dong LC, Hoffman ASJ (1990) Synthesis and application of thermally reversible heterogels for drug delivery. J Control Release 13:21–31. https://doi.org/10.1016/0168-3659(90)90071-Z

    Article  CAS  Google Scholar 

  8. Stoffer JO, Bone T (1980) Polymerization in water-in-oil microemulsion systems. I. J Polym Sci Polym Chem 18(8):2641–2648. https://doi.org/10.1002/pol.1980.170180822

    Article  CAS  Google Scholar 

  9. Gan LM, Chieng TH, Chew CH (1994) Microporous polymeric materials from microemulsion polymerization. Langmuir 10(11):4022–4026. https://doi.org/10.1021/la00023a020

    Article  CAS  Google Scholar 

  10. Raj WRP, Sasthav M, Cheung HM (1995) Polymerization of single phase microemulsions: dependence of polymer morphology on microemulsion structure. Polymer 36(13):2637–2646

    Article  CAS  Google Scholar 

  11. Candau F, Leong YS, Pouyet G, Candau S (1984) Inverse microemulsion polymerization of acrylamide: characterization of the water-in-oil microemulsions and the final microlatexes. J Colloid Interface Sci 101(1):167–183. https://doi.org/10.1016/0021-9797(84)90017-1

    Article  CAS  Google Scholar 

  12. Shimaa ME, Reem KF, Nermien SM (2012) Synthesis and characterization of pH-sensitive crosslinked (NIPA-co-AAC) nanohydrogels copolymer. J Appl Polym Sci 124:1947–1955. https://doi.org/10.1002/app.34912

    Article  Google Scholar 

  13. Viran PM, Manish PP (2014) Synthesis of new superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel for effective removal of As(V) and Cd(II) toxic metal ions. Chin Chem Lett 25(4):601–604. https://doi.org/10.1016/j.cclet.2014.01.031

    Article  Google Scholar 

  14. Jaiswal MK, Banerjee R, Pradhan P, Bahadur D (2010) Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B 81(1):185–194. https://doi.org/10.1016/j.colsurfb.2010.07.009

    Article  CAS  Google Scholar 

  15. Bouillot P, Vincent B (2000) A comparison of the swelling behavior of copolymer and interpenetrating network microgel particles. Colloid Polym Sci 278:74–79

    Article  CAS  Google Scholar 

  16. Silva JM, Ortega-Gudiño P, Rabelero M, Sánchez-Díaz JC, Guerrero-Ramírez LG, Puig JE (2013) Increasing solid content in latexes of polyacrylamide nanoparticles made by semi-continuous inverse heterophase polymerization. J Macromol Sci, Part A: Pure Appl Chem 50(6):596–601. https://doi.org/10.1080/10601325.2013.784548

    Article  CAS  Google Scholar 

  17. Biffis A, Orlandi N, Corain B (2003) Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology. Adv Mater 15:1551–1555. https://doi.org/10.1002/adma.200304977

    Article  CAS  Google Scholar 

  18. Murthy PS, Murali MY, Varaprasad K, Sreedhar B, Mohana RK (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217–224. https://doi.org/10.1016/j.jcis.2007.10.014

    Article  CAS  Google Scholar 

  19. Pourbeyram S, Mohammadi S (2014) Synthesis and characterization of highly stable and water dispersible hydrogel–copper nanocomposite. J Non-Cryst Solids 402:58–63. https://doi.org/10.1016/j.jnoncrysol.2014.05.020

    Article  CAS  Google Scholar 

  20. Abdollahi Z, Gomes VG. (2011) Synthesis and characterization of polyacrylamide with controlled molar weight ResearchGate. 1–7

  21. Brandrup J, Immergut EH (1999) Polymer handbook, 4th edn. Wiley-Interscience, New York,

    Google Scholar 

  22. Villarroel Betancourt H J. (2009) Estudio de los polímeros hidrogeles sintetizados a partir de acrilamida con el biopolímero poli(3-hidroxibutirato) y el ácido acrílico. (Bachelor dissertation). Departamento de Química. Universidad de Oriente, Cumaná, Venezuela

Download references

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología (México) through grant # CB-169444.

Author information

Authors and Affiliations

Authors

Contributions

Cándida A. Cisneros-Covarrubias performed the experiments; Miguel A. Corona-Rivera and Víctor M. Ovando-Medina conceived the idea and designed the experiments; Hugo Martínez-Gutiérrez performed the Cryo-SEM analysis; Eduardo Mendizábal analyzed the data; Ricardo Manríquez-González performed the NMR analysis.

Corresponding author

Correspondence to Miguel A. Corona-Rivera.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cisneros-Covarrubias, C.A., Corona-Rivera, M.A., Ovando-Medina, V.M. et al. Water-dispersible nanohydrogels of cross-linked polyacrylamide. Colloid Polym Sci 295, 2395–2404 (2017). https://doi.org/10.1007/s00396-017-4211-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4211-9

Keywords

Navigation