Colloid and Polymer Science

, Volume 295, Issue 11, pp 2183–2190 | Cite as

Wetting of planar solid surfaces by bicontinuous sugar surfactant-based microemulsions

  • Salomé Vargas-Ruiz
  • Jana Lutzki
  • Regine von Klitzing
  • Thomas Hellweg
  • Stefan WellertEmail author
Original Contribution


Optimal wetting of solid substrates is an essential prerequisite for extractive mass transport out of the surface into a microemulsion. In contrast to its importance for practical applications, the wetting properties of microemulsions still are partly unknown. Here, we use contact angle goniometry and Wilhelmy-type force measurements to characterize the wetting of bicontinuous microemulsions at hydrophilic and hydrophobic solid substrates. Microemulsions of different oil-to-water ratios from the bicontinuous region of two quaternary systems, built up by oil (a nonpolar (tetradecane) and a polar oil (methyl oleate)) in combination with water, sugar surfactant, and alcohol (pentanol) have been used. For all microemulsions, a partial wetting regime was found at planar model surfaces. The wetting of hydrophobic surfaces shows differences related to the wetting behavior of the oil component and its adhesion to the substrate. The contact angle hysteresis indicates the formation of adsorption layers between surface and microemulsion bulk.


Microemulsions Structural properties Adsorption Ordering 



Methyl oleate and surfactant solution Simusol SL55 were kindly provided by BASF and Seppic GmbH. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) (Grants HE2995/3-1 and WE5066/1-1). We thank Dataphysics for kindly providing the DCATS software for performing dynamic contact angle measurements.


This study was funded by Deutsche Forschungsgemeinschaft DFG (grant number WE5066/1-1 (S. Wellert) and HE2995/3-1 (T. Hellweg)).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

396_2017_4188_MOESM1_ESM.pdf (205 kb)
(PDF 205 KB)


  1. 1.
    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739–805CrossRefGoogle Scholar
  2. 2.
    Butt HJ, Roisman IV, Brinkmann M, Papadopoulos P, Vollmer D, Semprebon C (2014) Characterization of super liquid-repellent surfaces. Curr Opinion Colloid Interf Sci 19:343–354CrossRefGoogle Scholar
  3. 3.
    De Gennes PG (1985) Wetting-statics and dynamics. Rev Mod Phys 57:827–863CrossRefGoogle Scholar
  4. 4.
    Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhesion Sci Technol 6:1269–1302CrossRefGoogle Scholar
  5. 5.
    Marmur A (2009) Solid-surface characterization by wetting. Annu Rev Mater Res 39:473–489CrossRefGoogle Scholar
  6. 6.
    Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  7. 7.
    Vargas-Ruiz S, Schulreich C, Kostevic A, Tiersch B, Koetz J, Kakorin S, von Klitzing R, Jung M, Hellweg T, Wellert S (2016) Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions. J Colloid Interf Sci 471:118–126CrossRefGoogle Scholar
  8. 8.
    Boonme P (2007) Applications of microemulsions in cosmetics. J Cosmet Dermatol 6:223–228CrossRefGoogle Scholar
  9. 9.
    Kalaitzaki A, Emo M, Stébé MJ, Xenakis A, Papadimitriou V (2013) Biocompatible nanodispersions as delivery systems of food additives: a structural study. Food Res Int 54:1448–1454CrossRefGoogle Scholar
  10. 10.
    Bera A, Mandal A (2015) Microemulsions: a novel approach to enhanced oil recovery: a review. J Petrol Explor Prod Technol 5:255–268CrossRefGoogle Scholar
  11. 11.
    Lawrence M, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121CrossRefGoogle Scholar
  12. 12.
    Biole D, Bertola V (2015) The role of the microscale contact line dynamics in the wetting behaviour of complex fluids. Arch Mech 67:401–414Google Scholar
  13. 13.
    Starov VM (2004) Surfactant solutions and porous substrates: spreading and imbibition. Adv Colloid Interface Sci 111:3–27CrossRefGoogle Scholar
  14. 14.
    Lu G, Wang XD, Duan YY (2016) Critical review of dynamic wetting by complex fluids: from newtonian fluids to non-newtonian fluids and nanofluids. Adv Colloid Interface Sci 236:43–62CrossRefGoogle Scholar
  15. 15.
    Gerstenberg MC, Pedersen JS, Smith GS (1998) Surface induced ordering of micelles at the solid-liquid interface. Phys Rev E 58:8028–8031CrossRefGoogle Scholar
  16. 16.
    Gerstenberg MC, Pedersen JS (2001) Surface induced ordering of triblock copolymer micelles at the solid-liquid interface. 2. Modeling Langmuir 17:7040–7046CrossRefGoogle Scholar
  17. 17.
    Gerstenberg MC, Pedersen JS, Smith GS (2002) Surface induced ordering of triblock copolymer micelles at the solid-liquid interface. 1. experimental results. Langmuir 18:4933–4943CrossRefGoogle Scholar
  18. 18.
    Dresselhuis DM, Van Aken GA, De Hoog EHA, Stuart MAC (2008) Direct observation of adhesion and spreading of emulsion droplets at solid surfaces. Soft Matter 4:1079–1085CrossRefGoogle Scholar
  19. 19.
    Fattaccioli J, Baudry J, Henry N, Borchard-Wyart F, Bibette J (2008) Specific wetting probed with biomimetic emulsion droplets. Soft Matter 4:2434–2440CrossRefGoogle Scholar
  20. 20.
    Wellert S, Imhof H, Dolle M, Altmann H-J, Richardt A, Hellweg T (2007) Decontamination of chemical warfare agents using perchloroethylene-Marlowet IHF-H2Obased microemulsions: Wetting and extraction properties on realistic surfaces. Colloid Polym Sci 286:417–426CrossRefGoogle Scholar
  21. 21.
    Wasan D, Nikolov A, Kondiparty K (2011) The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr Opinion Colloid Interf Sci 16:344–349CrossRefGoogle Scholar
  22. 22.
    Lang P, Steitz R, Braun C (2000) Surface effects of lyotropic liquid crystalline phases of nonionic surfactants. Colloids Surf A 163:91–101CrossRefGoogle Scholar
  23. 23.
    Lang P (2004) Surface induced ordering effects in soft condensed matter systems. J Phys Condens Matter 16:R699–R720CrossRefGoogle Scholar
  24. 24.
    Alava M, Dubé M, Rost M (2004) Imbibition in disordered media. Adv Phys 53:83–175CrossRefGoogle Scholar
  25. 25.
    Zhmud BV, Tiberg F, Hallstensson K (2000) Dynamics of capillary rise. J Colloid Interface Sci 228:263–269CrossRefGoogle Scholar
  26. 26.
    Starov VM (2004) Spontaneous rise of surfactant solutions into vertical hydrophobic capillaries. J Colloid Interface Sci 270:180–186CrossRefGoogle Scholar
  27. 27.
    Starov VM, Zhdanov SA, Velarde MG (2004) Capillary imbibition of surfactant solutions in porous media and thin capillaries: partial wetting case. J Colloid Interface Sci 273:589–595CrossRefGoogle Scholar
  28. 28.
    Piroird K, Clanet C, Quéré D (2011) Detergency in a tube. Soft Matter 7:7498–7503CrossRefGoogle Scholar
  29. 29.
    Hammond PS, Unsal E (2010) Spontaneous imbibition of surfactant solution into an oil-wet capillary force the effects of surfactant diffusion ahead of the advancing meniscus. Langmuir 26:6206–6221CrossRefGoogle Scholar
  30. 30.
    Bera A, Kumar T, Ojha K, Mandal A (2014) Screening of microemulsion properties for application in enhanced oil recovery. Fuel 121:198–207CrossRefGoogle Scholar
  31. 31.
    Zelenev AS, Champagne LM, Hamilton M (2011) Investigation of interactions of diluted microemulsions with shale rock and sand by adsorption and wettability measurements. Colloids Surf A 391:201–207CrossRefGoogle Scholar
  32. 32.
    Strey R (1994) Microemulsion microstructure and interfacial curvature. Colloid Polym Sci 272:1005–1019CrossRefGoogle Scholar
  33. 33.
    Komura S (2007) Mesoscale structures in microemulsions. J Phys Condens Matter 19:463101–463131CrossRefGoogle Scholar
  34. 34.
    Lee DD, Chen SH, Majkrzak CF, Satija SK (1995) surface correlations in a microemulsion. Phys Rev Bulk E 52:R29–R32CrossRefGoogle Scholar
  35. 35.
    Kerscher M, Busch P, Mattauch S, Frielinghaus H, Richter D, Belushkin M, Gompper G (2011) Near-surface structure of a bicontinuous microemulsion with a transition region. Phys Rev E 83:030401CrossRefGoogle Scholar
  36. 36.
    Hamilton WA, Porcar L, Butler PD, Warr GG (2002) Local membrane ordering of sponge phases at a solid–solution interface. J Chem Phys 116:8533–8546CrossRefGoogle Scholar
  37. 37.
    Vargas-Ruiz S, Soltwedel O, Micciulla S, Sreij R, Feoktystov A, von Klitzing R, Hellweg T, Wellert S (2016) Sugar surfactant based microemulsions at solid surfaces: influence of the oil type and surface polarity. Langmuir 32:11928–11938CrossRefGoogle Scholar
  38. 38.
    Engelnkemper S, Wilczek M, Gurevich SV, Thiele U (2016) Morphological transitions of sliding drops: Dynamics and bifurcations. Phys Rev Fluids 1:073901–1–073901–26CrossRefGoogle Scholar
  39. 39.
    Kim H-Y, Lee HJ, Kang BH (2002) Sliding of liquid drops down an inclined solid surface. J Colloid Interface Sci 247:372–380CrossRefGoogle Scholar
  40. 40.
    Thiele U, Neuffer K, Bestehorn M, Pomeau Y, Velarde MG (2002) Sliding drops on an inclined plane. Colloids Surf A Physicochem Eng Aspects 206:87–104CrossRefGoogle Scholar
  41. 41.
    Johnson RE, Dettre RH, Brandreth DA (1977) Dynamic contact angles and contact angle hysteresis. J Colloid Interf Sci 62:205–212CrossRefGoogle Scholar
  42. 42.
    Seebergh JE, Berg JC (1992) Dynamic wetting in the low capillary number regime. Chem Eng Sci 47:4455–4464CrossRefGoogle Scholar
  43. 43.
    Eral HB, ’t Mannetje DJCM, Oh JM (2013) Contact angle hysteresis: a review of fundamentals and applications. J Colloid Polym Sci 291:247–260CrossRefGoogle Scholar
  44. 44.
    Extrand CW (2004) Contact angles and their hysteresis as a measure of liquid-solid adhesion. Langmuir 20:4017–4021CrossRefGoogle Scholar
  45. 45.
    Keller AA, Broje V, Setty K (2007) Effect of advancing velocity and fluid viscosity on the dynamic contact angle of petroleum hydrocarbons. J Pet Sci Eng 58:201–206CrossRefGoogle Scholar
  46. 46.
    Burauer S, Sachert T, Sottmann T, Strey R (1999) On microemulsion phase behavior and the monomeric solubility of surfactant. Phys Chem Chem Phys 1:4299–4306CrossRefGoogle Scholar
  47. 47.
    Sottmann T, Kluge K, Strey R, Reimer J, Söderman O (2002) General patterns of the phase behavior of mixtures of H2O, Alkyl Glucosides, and cosurfactants. Langmuir 18:3058–3067CrossRefGoogle Scholar
  48. 48.
    Ivanova NA, Starov VM (2011) Wetting of low free energy surfaces by aqueous surfactant solutions. Curr Opin Colloid Interface Sci 16:285–291CrossRefGoogle Scholar
  49. 49.
    Ingram BT (1974) Wetting of silica by n-alkanes. J Chem Soc Faraday Trans 1 70:868–876CrossRefGoogle Scholar
  50. 50.
    Extrand CW (1998) A thermodynamic model for contact angle hysteresis. J Colloid INterf Sci 207:11–19CrossRefGoogle Scholar
  51. 51.
    Jr TF (1964) In contact angle. In: Gould RF (ed) Wettability and adhesion. ACS, Washington. Chapter 21, pp 310–316Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Salomé Vargas-Ruiz
    • 1
  • Jana Lutzki
    • 1
  • Regine von Klitzing
    • 1
  • Thomas Hellweg
    • 2
  • Stefan Wellert
    • 1
    Email author
  1. 1.Stranski-Laboratorium für Physikalische und Theoretische ChemieTechnische Universität BerlinBerlinGermany
  2. 2.Physikalische und Biophysikalische Chemie (PC III)Universität BielefeldBielefeldGermany

Personalised recommendations