Skip to main content
Log in

Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Flavonoids such as quercetin (QCT) represent a diverse class of natural compounds with unique therapeutic potential in cancer and inflammatory diseases. However, their clinical efficacy is hindered by poor aqueous solubility and stability. This study describes the in vitro evaluation of QCT-encapsulated polymeric micelles based on methoxy polyethylene glycol-b-poly(D,L-lactide) (mPEG-PLA) and methoxy polyethylene glycol-b-poly(ε-caprolactone) (mPEG-PCL) copolymers as a drug delivery platform for QCT. The copolymers were synthesized in different molecular weights (MWs) of the hydrophobic blocks to investigate the effect of polymer type and MW on the micelle properties. All copolymers exhibited critical micelle concentrations (CMCs) in the micromolar range or lower and produced QCT-loaded micelles with particles sizes < 100 nm. mPEG5K-PLA3K, with the highest predicted compatibility with QCT as indicated by the Flory-Huggins interaction parameter, was able to achieve the highest loading capacity and encapsulation efficiency. Drug loading also exhibited a strong correlation with the hydrophilic-lipophilic balance (HLB) of the copolymers. In vitro release of the micelles followed a biphasic profile, with an initial burst phase followed by a controlled release phase, and showed a clear dependence on drug-copolymer compatibility and copolymer MW. This work represents the first report on the use of mPEG-PLA micelles to encapsulate QCT. It also emphasizes the importance of tuning formulation variables as they influence the properties of polymeric micelles for the design of a successful nanomedicine for QCT and similar drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  Google Scholar 

  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  3. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  Google Scholar 

  4. Ikoba U, Peng H, Li H, Miller C, Yu C, Wang Q (2015) Nanocarriers in therapy of infectious and inflammatory diseases. Nano 7(10):4291–4305

    CAS  Google Scholar 

  5. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  Google Scholar 

  6. Sunoqrot S, Hamed R, Abdel-Halim H, Tarawneh O (2017) Synergistic interplay of medicinal chemistry and formulation strategies in nanotechnology – from drug discovery to nanocarrier design and development. Curr Top Med Chem 17(13):1451–1468

    Article  CAS  Google Scholar 

  7. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  Google Scholar 

  8. Huynh L, Neale C, Pomes R, Allen C (2012) Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine 8(1):20–36

    Article  CAS  Google Scholar 

  9. Yan J, Ye Z, Chen M, Liu Z, Xiao Y, Zhang Y, Zhou Y, Tan W, Lang M (2011) Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(epsilon-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Biomacromolecules 12(7):2562–2572

    Article  CAS  Google Scholar 

  10. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97(3):1179–1190

    Article  CAS  Google Scholar 

  11. Latere Dwan'Isa JP, Rouxhet L, Preat V, Brewster ME, Arien A (2007) Prediction of drug solubility in amphiphilic di-block copolymer micelles: the role of polymer-drug compatibility. Pharmazie 62(7):499–504

    Google Scholar 

  12. Formica JV, Regelson W (1995) Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 33(12):1061–1080

    Article  CAS  Google Scholar 

  13. Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun 328(1):227–234

    Article  CAS  Google Scholar 

  14. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2):315–325

    Article  CAS  Google Scholar 

  15. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton Jr E, Lee MT (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128(5):999–1010

    Article  CAS  Google Scholar 

  16. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, Aiello FB, Piantelli M (2000) Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer 87(4):595–600

    Article  CAS  Google Scholar 

  17. Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, Huang N (2015) Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine 10:2051–2063

    Article  CAS  Google Scholar 

  18. Khonkarn R, Mankhetkorn S, Hennink WE, Okonogi S (2011) PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 79(2):268–275

    Article  CAS  Google Scholar 

  19. Yang X, Zhu B, Dong T, Pan P, Shuai X, Inoue Y (2008) Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol Biosci 8(12):1116–1125

    Article  CAS  Google Scholar 

  20. Sunoqrot S, Bae JW, Pearson RM, Shyu K, Liu Y, Kim DH, Hong S (2012) Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules 13(4):1223–1230

    Article  CAS  Google Scholar 

  21. Sunoqrot S, Hasan L, Alsadi A, Hamed R, Tarawneh O (2017) Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: implications for gastro-retentive drug delivery. Colloid Surface B 156:1–8

    Article  CAS  Google Scholar 

  22. Basu Ray G, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (CMC) and indexing micellar polarity. J Colloid Interface Sci 294(1):248–254

    Article  CAS  Google Scholar 

  23. Gao W, Kim JY, Anderson JR, Akopian T, Hong S, Jin YY, Kandror O, Kim JW, Lee IA, Lee SY, McAlpine JB, Mulugeta S, Sunoqrot S, Wang Y, Yang SH, Yoon TM, Goldberg AL, Pauli GF, Suh JW, Franzblau SG, Cho S (2015) The cyclic peptide ecumicin targeting ClpC1 is active against mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 59(2):880–889

    Article  Google Scholar 

  24. Bae JW, Pearson RM, Patra N, Sunoqrot S, Vukovic L, Kral P, Hong S (2011) Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chem Commun 47(37):10302–10304

    Article  CAS  Google Scholar 

  25. Owen SC, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7(1):53–65

    Article  CAS  Google Scholar 

  26. Maysinger D, Lovrić J, Eisenberg A, Savić R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65(3):270–281

    Article  CAS  Google Scholar 

  27. Diezi TA, Bae Y, Kwon GS (2010) Enhanced stability of PEG-block-poly(N-hexyl stearate L-aspartamide) micelles in the presence of serum proteins. Mol Pharm 7(4):1355–1360

    Article  CAS  Google Scholar 

  28. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214

    Article  CAS  Google Scholar 

  29. Adams ML, Kwon GS (2002) The effects of acyl chain length on the micelle properties of poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugates. J Biomater Sci Polym Ed 13(9):991–1006

    Article  CAS  Google Scholar 

  30. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  Google Scholar 

  31. Cho H, Lai TC, Tomoda K, Kwon GS (2015) Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech 16(1):10–20

    Article  CAS  Google Scholar 

  32. Wang BL, Gao X, Men K, Qiu J, Yang B, Gou ML, Huang MJ, Huang N, Qian ZY, Zhao X, Wei YQ (2012) Treating acute cystitis with biodegradable micelle-encapsulated quercetin. Int J Nanomedicine 7:2239–2247

    CAS  Google Scholar 

  33. Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C (2014) Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 9:684

    Article  Google Scholar 

  34. Peng W, X-y J, Zhu Y, Omari-Siaw E, Deng W-w, Yu J-n, Xu X-m, W-m Z (2015) Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharm Sin 36(1):139–148

    Article  CAS  Google Scholar 

  35. Mahmud A, Patel S, Molavi O, Choi P, Samuel J, Lavasanifar A (2009) Self-associating poly (ethylene oxide)-b-poly (α-cholesteryl carboxylate-ε-caprolactone) block copolymer for the solubilization of STAT-3 inhibitor cucurbitacin I. Biomacromolecules 10(3):471–478

    Article  CAS  Google Scholar 

  36. Patel SK, Lavasanifar A, Choi P (2010) Prediction of the solubility of cucurbitacin drugs in self-associating poly (ethylene oxide)-b-poly (α-benzyl carboxylate ɛ-caprolactone) block copolymer with different tacticities using molecular dynamics simulation. Biomaterials 31(2):345–357

    Article  CAS  Google Scholar 

  37. Li Y, Yang L (2015) Driving forces for drug loading in drug carriers. J Microencapsul 32(3):255–272

    Article  Google Scholar 

  38. Shuai X, Ai H, Nasongkla N, Kim S, Gao J (2004) Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release 98(3):415–426

    Article  CAS  Google Scholar 

  39. Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, De Leede LG, Crommelin DJ, Hennink WE (2008) The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm 68:596–606

    Article  CAS  Google Scholar 

  40. Glavas L, Odelius K, Albertsson AC (2015) Tuning loading and release by modification of micelle core crystallinity and preparation. Polym Advan Technol 26(7):880–888

    Article  CAS  Google Scholar 

  41. Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 5:1057–1065

    CAS  Google Scholar 

  42. Kwon GS, Kataoka K (2012) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 64:237–245

    Article  Google Scholar 

  43. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663

    Article  CAS  Google Scholar 

  44. Kim SH, Tan JPK, Nederberg F, Fukushima K, Colson J, Yang C, Nelson A, Yang Y-Y, Hedrick JL (2010) Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials 31(31):8063–8071

    Article  CAS  Google Scholar 

  45. Mikhail AS, Allen C (2010) Poly(ethylene glycol)-b-poly (ε-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology. Biomacromolecules 11(5):1273–1280

    Article  CAS  Google Scholar 

  46. Falamarzian A, Lavasanifar A (2010) Optimization of the hydrophobic domain in poly (ethylene oxide)-poly (ɛ-caprolactone) based nano-carriers for the solubilization and delivery of amphotericin B. Colloid Surface B 81(1):313–320

    Article  CAS  Google Scholar 

  47. Falamarzian A, Lavasanifar A (2010) Chemical modification of hydrophobic block in poly (ethylene oxide) poly (caprolactone) based nanocarriers: effect on the solubilization and hemolytic activity of amphotericin B. Macromol Biosci 10(6):648–656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Deanship of Academic Research and Graduate Studies at Al-Zaytoonah University of Jordan. The authors would like to thank Dr. Dima Sabbah from Al-Zaytoonah University of Jordan for assistance with MOE software, and Dr. Imad Hamadneh from the University of Jordan for assistance with NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhair Sunoqrot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 3.02 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunoqrot, S., Alsadi, A., Tarawneh, O. et al. Polymer type and molecular weight dictate the encapsulation efficiency and release of Quercetin from polymeric micelles. Colloid Polym Sci 295, 2051–2059 (2017). https://doi.org/10.1007/s00396-017-4183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4183-9

Keywords

Navigation