Skip to main content
Log in

Functional group penetration thickness and intraparticle diffusivity of electrospun poly(acrylonitrile) ion-exchange fibers

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The penetration depth of the functional group and the intraparticle diffusivity of a transition metal cation (Cu2+) have been determined for sub-micron-sized electrospun alkali hydrolyzed poly(acrylonitrile) ion-exchange fibers. The ion-exchange fiber’s shell thickness, determined using a TEM coupled with EDX spectrophotometer, was 8–14 nm and it averaged ~11 nm. The intraparticle diffusivity obtained through numerical simulation for the bidirectional transport of ions into and out of the fiber, i.e., for uptake as well as regeneration kinetics, is in the order of 10−20 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Deng S, Bai RB (2003) Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms Environ Sci Technol 37(24):5799–5805

    Article  CAS  Google Scholar 

  2. Gupta ML, Gupta B, Oppermann W, Hardtmann G (2004) Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications J Appl Polym Sci 91(5):3127–3133

    Article  CAS  Google Scholar 

  3. Zhang G, Meng H, Ji S (2009) Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance Desalination 242(1):313–324

    Article  CAS  Google Scholar 

  4. Jassal M, Bhowmick S, Sengupta S, Patra PK, Walker DI (2014) Hydrolyzed poly (acrylonitrile) electrospun ion-exchange fibers Environ Eng Sci 31(6):288–299

    Article  CAS  Google Scholar 

  5. Greenleaf JE, Sengupta AK (2006) Environmentally benign hardness removal using ion exchange fibers and snowmelt Environ Sci Technol 40:370

    Article  CAS  Google Scholar 

  6. Chen L, Yang G, Zhang J (1996) A study on the exchange kinetics of ion-exchange fiber React Funct Polym 29(3):139–144

    Article  CAS  Google Scholar 

  7. Lin W, Hsieh YL (1996) Kinetics of metal ion absorption on ion-exchange and chelating fibers Ind Eng Chem Res 35(10):3817–3821

    Article  CAS  Google Scholar 

  8. Weber WJ, Morris JC (1962). Advances in water pollution research. In Proceedings of the First International Conference on Water Pollution Research, 2, 231

  9. Cooney DO (1998) Adsorption design for wastewater treatment. CRC Press

  10. Crank J (1975) The mathematics of diffusion, 2d edn. Clarendon Press

  11. Höll W, Sontheimer H (1977) Ion exchange kinetics of the protonation of weak acid ion exchange resins Chem Eng Sci 32(7):755–762

    Article  Google Scholar 

  12. Schmuckler G (1984) Kinetics of moving-boundary ion-exchange processes React Polym Ion Exch Sorbents 2(1):103–110

    Article  CAS  Google Scholar 

  13. Helfferich FG (1990) Models and physical reality in ion-exchange kinetics React Polym 13(1):191–194

    Article  CAS  Google Scholar 

  14. Levenspiel O (1999) Chemical reaction engineering. John Wiley and Sons, New York

    Google Scholar 

  15. Outokesh M, Naderi A, Khanchi AR, Karimi Sabet J (2013) Modeling and process design of intraparticle adsorption in single-stage and multistage continuous stirred reactors: an analytical kinetics approach Ind Eng Chem Res 53(1):305–315

    Article  Google Scholar 

  16. Jung B, Yoon JK, Kim B, Rhee HW (2005) Effect of crystallization and annealing on polyacrylonitrile membranes for ultrafiltration J Membr Sci 246(1):67–76

    Article  CAS  Google Scholar 

  17. Bashir Z (1994) Co-crystallization of solvents with polymers: the x-ray diffraction behavior of solvent-containing and solvent-free polyacrylonitrile J Polym Sci B Polym Phys 32(6):1115–1128

    Article  CAS  Google Scholar 

  18. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers Colloids Surf A Physicochem Eng Asp 187:469–481

    Article  Google Scholar 

  19. Tijing LD, Choi JS, Lee S, Kim SH, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane J Membr Sci 453:435–462

    Article  CAS  Google Scholar 

  20. Zaikov GE, Iordanskiĭ AL, Markin VS (1988) Diffusion of electrolytes in polymers (vol. 2). VSP

Download references

Acknowledgements

We acknowledge financial support by the National Science Foundation Partnerships for Innovation Program through award no. IIP-0605163. The authors are grateful to Dr. Alexander Ribbe (UMass Amherst) for providing technical support for TEM/EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukalyan Sengupta.

Ethics declarations

Conflict of interest

We disclose no conflict of interest arising out of this work.

Electronic supplementary material

.

ESM 1

(DOCX 98 kb)

.

ESM 2

(XLSX 3314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, T., Jassal, M., Sengupta, S. et al. Functional group penetration thickness and intraparticle diffusivity of electrospun poly(acrylonitrile) ion-exchange fibers. Colloid Polym Sci 295, 2069–2075 (2017). https://doi.org/10.1007/s00396-017-4159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4159-9

Keywords

Navigation