Skip to main content
Log in

The phase transition from L3 phase to vesicles and rheological properties of a nonionic surfactant mixture system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A sponge phase (L3 phase) was observed in aqueous solution of a nonionic surfactant polyethylene glycol ether of tridecyl alcohol with the average 3 of ethylene oxide (CH3(CH2)12(OCH2CH2)3OH, abbreviated as Trideceth-3) with tetradecyldimethylamino oxide (\( {\mathrm{CH}}_3{\left({\mathrm{CH}}_2\right)}_{13}\overset{\overset{\mathrm{O}}{\uparrow }}{\mathrm{N}}{\left({\mathrm{CH}}_3\right)}_2 \), abbreviated as C14DMAO). The L3 phase can be transferred to planar lamellar phase after the bilayer was protonated by the formic acid formed through the hydrolysis of methylformate. The addition of surface charge into the nonionic L3 phase through electrostatic repulsion on the ionic head groups will suppress the Helfrich undulation and induce the transition to planar lamellar phase. The planar lamellar phase can be transformed into multilamellar vesicles under shear. Rheological properties show that both of the storage modulus and the loss modulus of the lamellar phase were increased with the increment of surface charge density. The phase transition from L3 phase to vesicles was characterized by rheological measurements, 2H NMR spectra, and transmission electron microscope (TEM) observations. To our best knowledge, this is the first example of a controlled phase transition in nonionic surfactant mixtures through protonation and shear forces. The procedure provides a direction on how to achieve phase transition in surfactant solution by changing the conditions and an application of phase transition of controlled materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Porte G, Appel J, Bassereau P, Marignan J (1989) Lα to L3: a topology driven transition in phases of infinite fluid membranes J Phys Fr 50:1335–1347

    Article  CAS  Google Scholar 

  2. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski J (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants Science 245:1371–1374

    Article  CAS  Google Scholar 

  3. Zemb T, Dubois M, Deme B, Gulik-Krzywicki T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions Science 283:816–819

    Article  CAS  Google Scholar 

  4. Kato T (2002) Self-assembly of phase-segregated liquid crystal structures Science 295:2414–2418

    Article  CAS  Google Scholar 

  5. Yan D, Zhou Y, Hou J (2004) Supramolecular self-assembly of macroscopic tubes Science 303:65–67

    Article  CAS  Google Scholar 

  6. O’Leary LER, Fallas JA, Bakota EL, Kang MK, Hartgerink JD (2011) Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel Nat Chem 3:821–828

    Article  Google Scholar 

  7. Gazeau D, Bellocq AM, Row D, Zemb T (1989) Experimental evidence for random surface structures in dilute surfactant solutions Europhys Lett 9:447–452

    Article  CAS  Google Scholar 

  8. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, McDonald MP (1983) Phase behaviour of polyoxyethylene surfactants with water J Chem Soc Faraday Trans 79(4):975–1000

    Article  CAS  Google Scholar 

  9. Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine J Phys Chem 91:6203–6210

    Article  CAS  Google Scholar 

  10. Porte G, Marignan J, Bassereau P, May R (1988) Shape transformations of the aggregates in dilute surfactant solutions: a small-angle neutron scattering study J Physiol Paris 49:511–519

    CAS  Google Scholar 

  11. Anderson D, Wennerström H, Olsson U (1989) Isotropic bicontinuous solutions in surfactant-solvent systems: the L3 phase J Phys Chem 93:4243–4253

    Article  CAS  Google Scholar 

  12. Penfold J, Chen M, Thomas RK, Dong C, Smyth TJP (2011) Solution self-assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate Langmuir 27:8867–8877

    Article  CAS  Google Scholar 

  13. Roux D, Cates ME, Olsson U, Ball RC, Nallet F, Bellocq AM (1990) Light scattering from a surfactant sponge phase: evidence for a hidden symmetry Europhys Lett 11:229–234

    Article  CAS  Google Scholar 

  14. Cates ME (1992) Sponge phases, vol 66. Springer, Berlin Heidelberg, pp. 275–280

    Google Scholar 

  15. Strey R, Schomäcker R, Roux D, Nallet F, Olsson U (1990) Dilute lamellar and L3 phases in the binary water–C12E5 system J Chem Soc Faraday Trans 86:2253–2261

    Article  CAS  Google Scholar 

  16. Strey R, Jahn W, Porte G, Bassereau P (1990) Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases Langmuir 6:1635–1639

    Article  CAS  Google Scholar 

  17. Miller CA, Gradzeilski M, Hoffmann H, Kramer U, Thanic C (1991) L3 phases: their structure and dynamic properties Progr Colloid Polym Sci 84:243–249

    Article  CAS  Google Scholar 

  18. Skouri M, Marignan J, Appell J, Porte G (1991) Fluid membranes in the “semi-rigid regime”: scale invariance J Phys B Atomic Mol Phys 1(9):1121–1132

    CAS  Google Scholar 

  19. Roux D, Coulon C, Cates ME (1992) Sponge phases in surfactant solutions J Phys Chem 96:4174–4187

    Article  CAS  Google Scholar 

  20. Vinches C, Coulon C, Roux D (1992) Viscosity of sponge phase in porous medium J Phys B Atomic Mol Phys 2(3):453–469

    CAS  Google Scholar 

  21. Waton G, Porte G (1993) Transient behavior and relaxations of the L3 (sponge) phase: T-jumb experiments J Phys B Atomic Mol Phys 3(4):515–530

    CAS  Google Scholar 

  22. Filali M, Porte G, Appell J, Pfeuty P (1994) L3 (sponge) phase in the very dilute regime: spontaneous tearing of the membrane J Phys B Atomic Mol Phys 4(2):349–365

    Google Scholar 

  23. Porte G, Appell J, Bassereau P, Marignan M, Skouri M, Billard I (1991) Scaling laws for some physical properties of the L3 phase Progr Colloid Polym Sci 84:264–265

    Article  CAS  Google Scholar 

  24. Granek R, Cates ME (1992) Sponge phase of surfactant solutions: an unusual dynamic structure factor Phys Rev A 46:3319–3334

    Article  CAS  Google Scholar 

  25. Watanabe K, Nakama Y, Tanaki T, Hoffmann H (2001) Novel vesicle and sponge phase prepared in amphoteric surfactant/anionic surfactant/oleic acid/water system Langmuir 17:7219–7224

    Article  CAS  Google Scholar 

  26. Munkert U, Hoffmann H, Thunig C, Meyer HW, Richter W (1992) From vesicles to the L3 (sponge) phase in alkyldimethylamine oxide/heptanol systems Langmuir 8:2629–2638

    Article  Google Scholar 

  27. Thunig C, Platz G, Hoffmann H (1992) Phase behavior and light scattering of the system dodecyldimethylaminoxide, n-hexanol and water in the very dilute region Ber Bunsenges Phys Chem 96:667–667

    Article  Google Scholar 

  28. Mahjoub HF, McGrath KM, Kléman M (1996) Phase transition induced by shearing of a sponge phase Langmuir 12:3131–3138

    Article  CAS  Google Scholar 

  29. Yamamoto J, Tanaka H (1996) Shear-induced sponge-to-lamellar transition in a hyperswollen lyotropic system Phys Rev Lett 77:4390–4393

    Article  CAS  Google Scholar 

  30. Nilsson PG, Lindman B (1984) Nuclear magnetic resonance self-diffusion and proton relaxation studies of nonionic surfactant solutions. Aggregate shape in isotropic solutions above the clouding temperature J Phys Chem 88:4764–4769

    Article  CAS  Google Scholar 

  31. Dong R, Zhong Z, Hao J (2012) Self-assembly of onion-like vesicles induced by charge and rheological properties in anionic-nonionic surfactant solutions Soft Matter 8:7812–7821

    Article  CAS  Google Scholar 

  32. Medronho B, Shafaei S, Szopko R, Miguel MG, Olsson U, Schmidt C (2008) Shear-induced transitions between a planar lamellar phase and multilamellar vesicles: continuous versus discontinuous transformation Langmuir 24:6480–6486

    Article  CAS  Google Scholar 

  33. Nettesheim F, Zipfel J, Olsson U, Renth F, Lindner P, Richtering W (2003) Shear-induced transitions between a planar lamellar phase and multilamellar vesicles: continuous versus discontinuous transformation Langmuir 19:3603–3618

    Article  CAS  Google Scholar 

  34. Song S, Song A (2014) Self-assembled structures of amphiphiles regulated via implanting external stimuli RSC Adv 4:41864–41875

    Article  CAS  Google Scholar 

  35. Song S, Wang H, Song A, Dong S, Hao J (2014) Sponge phase producing porous CeO2 for catalytic oxidation of CO Chem Eur J 20:9063–9072

    CAS  Google Scholar 

  36. Wang A, Shi W, Huang J (2016) Adaptive soft molecular self-assemblies Soft Matter 12:337–357

    Article  CAS  Google Scholar 

  37. Gentile L, Behrens MA, Porcar L, Butler P, Wagner NJ, Olsson U (2014) Multilamellar vesicle formation from a planar lamellar phase under shear flow Langmuir 30(28):8316–8325

    Article  CAS  Google Scholar 

  38. Porcar L, Hamilton WA, Butler PD, Warr GG (2003) Scaling of structural and rheological response of L3 sponge phases in the “sweetened” cetylpyridinium/hexanol/dextrose/brine system Langmuir 19(26):10779–10794

    Article  CAS  Google Scholar 

  39. Porcar L, Hamilton WA, Butler PD, Warr GG (2004) Topological relaxation of a shear-induced lamellar phase to sponge equilibrium and the energetics of membrane fusion Phys Rev Lett 93(19):198301

    Article  CAS  Google Scholar 

  40. Bergmeier M, Gradzielski M, Hoffmann H, Mortensen K (1999) Behavior of ionically charged lamellar systems under the influence of a shear field J Phys Chem B 103:1605–1617

    Article  CAS  Google Scholar 

  41. Winterhalter M, Helfrich W (1992) Bending elasticity of electrically charged bilayers: coupled monolayers, neutral surfaces, and balancing stresses J Phys Chem 96:327–330

    Article  CAS  Google Scholar 

  42. Helfrich W (1994) Lyotropic lamellar phases J Phys Condens Matter 6:A79–A92

    Article  CAS  Google Scholar 

  43. Friedrich H, Frederik PM, de With G, Sommerdijk NAJM (2010) Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images Angew Chem Int Ed 49:7850–7858

    Article  CAS  Google Scholar 

  44. Song A, Dong S, Jia X, Hao J, Liu W, Liu T (2005) An onion phase in salt-free zero-charged catanionic surfactant solutions Angew Chem Int Ed 44:4018–4021

    Article  CAS  Google Scholar 

  45. Lukaschek M, Miiller S, Hansenhindl A, Grabowski DA, Schmidt C (1996) Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance Colloid Polym Sci 274:1–7

    Article  CAS  Google Scholar 

  46. Zana R (1987) Surfactant solutions.New methods of investigation. Marcel Dekker, New York,

    Google Scholar 

  47. Yuan Z, Dong S, Liu W, Hao J (2009) Transition from vesicle phase to lamellar phase in salt-free catanionic surfactant solution Langmuir 25:8974–8981

    Article  CAS  Google Scholar 

  48. Li X, Dong S, Jia X, Song A, Hao J (2007) Vesicles of a new salt-free catanionic fluoro-hydrocarbon surfactant system Chem Eur J 13:9495–9502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2016BQ30), the Young Talents Training Program of Shandong Academy of Agricultural Sciences, and Special Agricultural Research Program (201303103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwen Shen or Jingcheng Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Hoffmann, H., Lin, H. et al. The phase transition from L3 phase to vesicles and rheological properties of a nonionic surfactant mixture system. Colloid Polym Sci 295, 1663–1670 (2017). https://doi.org/10.1007/s00396-017-4144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4144-3

Keywords

Navigation