Skip to main content
Log in

Sub-diffusive dynamics and two-step yielding in dense thermo-responsive microgel glasses

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We have prepared dense colloidal suspensions of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with different volume fractions by subjecting the particles to different amounts of osmotic compression. Structural ordering and dynamics have been investigated using light scattering and yielding behaviour by oscillatory rheology. At room temperature, suspensions have found to exhibit a glassy state with the microgel particle size to be smaller than that determined under dilute conditions (i.e. deswelling of particles under osmotic compression). Quite interestingly, we observed (a) sub-diffusive mean square displacement (MSD) at short times and (b) two-step yielding (i.e. loss modulus, G″(ω), exhibiting two peaks as a function of shear strain amplitude, γ o ) in the glassy state. These findings are interpreted in terms of the overlap of dangling polymer chains between shells of the neighbouring PNIPAM microgel particles which are known to have a core-shell structure. At elevated temperatures, the two-step yielding behaviour of the glasses has been observed to change into a single-step yielding. With further increase in temperature, it has been found that PNIPAM microgel glasses melt into a liquid-like order and the behaviour of MSD changes from sub-diffusive to diffusive type. The results are discussed in light of those reported for attractive and repulsive colloidal glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tata BVR, Brijitta J, Joshi RG (2011) Thermo-responsive nanogel dispersions: dynamics and phase behaviour Int J Adv Eng Sci Appl Math 5:240–249. doi:10.1007/s12572-010-0016-5

    Article  Google Scholar 

  2. Fernández-Nieves A, Fernández-Barbero A, Vincent B, De Las Nieves FJ (2003) Osmotic de-swelling of ionic microgel particles J Chem Phys 119:10383–10388. doi:10.1063/1.1618734

    Article  Google Scholar 

  3. Joshi RG, Tata BVR, Brijitta J (2011) Pressure tuning of bragg diffraction in stimuli responsive microgel crystals AIP Conf Proc 1349:208–209. doi:10.1063/1.3605809

    Article  CAS  Google Scholar 

  4. Cho JK, Meng Z, Lyon LA, Breedveld V (2009) Tunable attractive and repulsive interactions between pH-responsive microgels Soft Matter 5:3599. doi:10.1039/b912105f

    Article  CAS  Google Scholar 

  5. Bischofberger I, Calzolari DCE, De Los RP, et al. (2014) Hydrophobic hydration of poly-N-isopropyl acrylamide: a matter of the mean energetic state of water Sci Rep 4:4377. doi:10.1038/srep04377

    Article  CAS  Google Scholar 

  6. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications Polymer (Guildf) 48:1815–1823. doi:10.1016/j.polymer.2007.02.004

    Article  CAS  Google Scholar 

  7. Saunders BR (2004) On the structure of poly(N-isopropylacrylamide) microgel particles Langmuir 20:3925–3932. doi:10.1021/la036390v

    Article  CAS  Google Scholar 

  8. Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids J Chem Phys 120:6197–6206. doi:10.1063/1.1665752

    Article  CAS  Google Scholar 

  9. Romeo G, Imperiali L, Kim J-W, et al. (2012) Origin of de-swelling and dynamics of dense ionic microgel suspensions J Chem Phys 136:124905. doi:10.1063/1.3697762

    Article  Google Scholar 

  10. Scheffold F, Daz-Leyva P, Reufer M, et al. (2010) Brushlike interactions between thermoresponsive microgel particles Phys Rev Lett 104:1–4. doi:10.1103/PhysRevLett.104.128304

    Article  Google Scholar 

  11. Joshi RG, Tata BVR, Brijitta J (2013) Dynamics in thermo-responsive nanogel crystals undergoing melting J Chem Phys 139:124901. doi:10.1063/1.4821584

    Article  CAS  Google Scholar 

  12. Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids Europhys Lett 75:915–921. doi:10.1209/epl/i2006-10203-9

    Article  CAS  Google Scholar 

  13. Pham KN, Petekidis G, Vlassopoulos D, et al. (2006) Yielding of colloidal glasses Europhys Lett 75:624–630. doi:10.1209/epl/i2006-10156-y

    Article  CAS  Google Scholar 

  14. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials Phys Rev Lett 78:2020–2023. doi:10.1103/PhysRevLett.78.2020

    Article  CAS  Google Scholar 

  15. Wyss HM, Miyazaki K, Mattsson J, et al. (2007) Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials Phys Rev Lett 98:238303. doi:10.1103/PhysRevLett.98.238303

    Article  Google Scholar 

  16. Petekidis G, Moussaïd A, Pusey PN (2002) Rearrangements in hard-sphere glasses under oscillatory shear strain Phys Rev E 66:51402. doi:10.1103/PhysRevE.66.051402

    Article  CAS  Google Scholar 

  17. Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids Phys Rev Lett 90:48304. doi:10.1103/PhysRevLett.90.048304

    Article  Google Scholar 

  18. Brijitta J (2011) Phsase behaviour of thermoresponsive poly(N-isopropylacrylamide) microgels: a light scattering and confocal laser scanning microscopic studies. Pondicherry University,

  19. Gao J, Frisken BJ (2003) Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels Langmuir 19:5217–5222. doi:10.1021/la034207s

    Article  CAS  Google Scholar 

  20. Gruner F, Lehmann W (1980) Multiple scattering of light in a system of interacting Brownian particles J Phys A Math Gen 13:2155–2170. doi:10.1088/0305-4470/13/6/037

    Article  Google Scholar 

  21. Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods J Colloid Interface Sci 207:150–158. doi:10.1006/jcis.1998.5769

    Article  CAS  Google Scholar 

  22. Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques Curr Opin Colloid Interface Sci 4:177–185. doi:10.1016/S1359-0294(99)00036-9

    Article  CAS  Google Scholar 

  23. Frisken BJ (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data Appl Opt 40:4087. doi:10.1364/AO.40.004087

    Article  CAS  Google Scholar 

  24. Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media Phys A Stat Mech its Appl 157:705–741. doi:10.1016/0378-4371(89)90063-0

    Article  CAS  Google Scholar 

  25. Haro-Pérez C, Ojeda-Mendoza GJ, Rojas-Ochoa LF (2011) Three dimensional cross-correlation dynamic light scattering by non-ergodic turbid media J Chem Phys 134:244902. doi:10.1063/1.3601749

    Article  Google Scholar 

  26. Segrè PN, Pusey PN (1996) Scaling of the dynamic scattering function of concentrated colloidal suspensions Phys Rev Lett 77:771–774. doi:10.1103/PhysRevLett.77.771

    Article  Google Scholar 

  27. Ballesta P, Besseling R, Isa L, et al. (2008) Slip and flow of hard-sphere colloidal glasses Phys Rev Lett 101:258301. doi:10.1103/PhysRevLett.101.258301

    Article  CAS  Google Scholar 

  28. Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in soft particle pastes Phys Rev Lett 92:198302. doi:10.1103/PhysRevLett.92.198302

    Article  Google Scholar 

  29. Tata BVR, Arora AK (1995) The stable state of charge polydisperse colloids: disordered or charge ordered? J Phys Condens Matter 7:3817–3834. doi:10.1088/0953-8984/7/20/003

    Article  CAS  Google Scholar 

  30. Ito M, Ishizone T (2006) Living anionic polymerization ofN-methoxymethyl-N-isopropylacrylamide: synthesis of well-defined poly(N-isopropylacrylamide) having various stereoregularity J Polym Sci Part A Polym Chem 44:4832–4845. doi:10.1002/pola.21583

    Article  CAS  Google Scholar 

  31. Biswas CS, Patel VK, Vishwakarma NK, et al. (2011) Effects of tacticity and molecular weight of poly(N-isopropylacrylamide) on its glass transition temperature Macromolecules 44:5822–5824. doi:10.1021/ma200735k

    Article  CAS  Google Scholar 

  32. Wendt HR, Abraham FF (1978) Empirical criterion for the glass transition region based on Monte Carlo simulations Phys Rev Lett 41:1244–1246. doi:10.1103/PhysRevLett.41.1244

    Article  CAS  Google Scholar 

  33. Kesavamoorthy R, Sood AK, Tata BVR, Arora AK (1988) The split in the second peak in the structure factor of binary colloidal suspensions: glass-like order J Phys C Solid State Phys 21:4737–4748. doi:10.1088/0022-3719/21/27/005

    Article  Google Scholar 

  34. van Megen W, Bryant G (2007) Dynamical heterogeneity and the freezing transition in hard-sphere suspensions: further analysis of the mean square displacement and the velocity autocorrelation function Phys Rev E 76:21402. doi:10.1103/PhysRevE.76.021402

    Article  Google Scholar 

  35. van Megen W, Underwood SM (1994) Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function Phys Rev E 49:4206–4220. doi:10.1103/PhysRevE.49.4206

    Article  Google Scholar 

  36. Tata BVR, Mohanty PS, Valsakumar MC (2001) Glass transition and dynamical heterogeneities in charged colloidal suspensions under pressure Phys Rev Lett 88:18302. doi:10.1103/PhysRevLett.88.018302

    Article  Google Scholar 

  37. Mattsson J, Wyss HM, Fernandez-Nieves A, et al. (2009) Soft colloids make strong glasses Nature 462:83–86. doi:10.1038/nature08457

    Article  CAS  Google Scholar 

  38. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials Phys Rev E 58:738–759. doi:10.1103/PhysRevE.58.738

    Article  CAS  Google Scholar 

  39. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition Phys Rev Lett 75:2770–2773. doi:10.1103/PhysRevLett.75.2770

    Article  CAS  Google Scholar 

  40. Shukla A, Arnipally S, Dagaonkar M, Joshi YM (2015) Two-step yielding in surfactant suspension pastes Rheol Acta 54:353–364. doi:10.1007/s00397-015-0845-z

    Article  CAS  Google Scholar 

  41. Wang H, Wu X, Zhu Z, et al. (2014) Revisit to phase diagram of poly(N-isopropylacrylamide) microgel suspensions by mechanical spectroscopy J Chem Phys 140:24908. doi:10.1063/1.4861426

    Article  Google Scholar 

  42. Petekidis G, Vlassopoulos D, Pusey PN (2003) Yielding and flow of colloidal glasses Faraday Discuss 123:287–302. doi:10.1039/b207343a

    Article  CAS  Google Scholar 

  43. Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses Soft Matter 7:2456. doi:10.1039/c0sm00957a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. A. K. Bahaduri, Dr. G. Amarendra, Dr. N. V. Chandra Shekar and Dr. T. R. Ravindran for their support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All the authors have equal contribution to this manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to R. G. Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

SM1: Elasticity recovery time after thermal cooling. SM2: Absence of wall slip effect in studied PNIPAM microgel glasses. (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R.G., Tata, B.V.R. Sub-diffusive dynamics and two-step yielding in dense thermo-responsive microgel glasses. Colloid Polym Sci 295, 1671–1683 (2017). https://doi.org/10.1007/s00396-017-4142-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4142-5

Keywords

Navigation