Skip to main content
Log in

Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Amphiphilic star-shaped copolymers based on star-shaped poly(L-lactide) (s-PLLA) and poly(ethylene glycol) (PEG) (s-PLLA-PEG) were synthesized with variable molecular weights (Mw) of PEG, and the relationship between the PEG block molecular weight of s-PLLA-PEG copolymers and their micelle properties were investigated. The structure and Mw of s-PLLA-PEG were characterized with 1H NMR, GPC, DSC, and XRD. The ibuprofen (IBU)-loaded s-PLLA-PEG micelles were prepared by dialysis method. The effects of PEG block molecular weight on the morphology, particle size, zeta potential, drug loading content (LC), drug encapsulation efficiency (EE), and in vitro drug release behavior of prepared micelles were investigated. Results indicated that the average diameters, LC, and EE of IBU-loaded s-PLLA-PEG micelles increased with increasing the Mw of PEG in s-PLLA-PEG copolymers. The in vitro study showed that the IBU accumulative release can be depressed by increasing the Mw of the s-PLLA-PEG, and the release profiles of IBU from s-PLLA-PEG followed the Baker-Lonsdale model equation. The results suggest that structural tailoring of PEG length from s-PLLA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prashant C, Yang C-T, Chuang K-H, Feng S-S (2010) Superparamagnetic iron oxide-loaded poly (lactic acid)-d-α-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials 31(21):5588–5597. doi:10.1016/j.biomaterials

    Article  CAS  Google Scholar 

  2. Zhu L, Liu F, Yu X, Xue L (2015) Poly(lactic acid) hemodialysis membranes with poly(lactic acid)-block-poly(2-hhydroxyethyl methacrylate) copolymer as additive: preparation, characterization, and performance. ACS Appl Mater Interfaces 7(32):17748–17755. doi:10.1021/acsami.5b03951

    Article  CAS  Google Scholar 

  3. Glavas L, Olsen P, Albertsson AC (2013) Achieving micelle control through core crystallinity. Biomacromolecules 14(11):4150–4156. doi:10.1021/bm401312j

    Article  CAS  Google Scholar 

  4. Ouyang C, Liu Q, Zhang Z, Song C (2011) Synthesis and characterization of star-shaped poly (lactide-co-glycolide) and its drug-loaded microspheres. Polym Bull 68(1):27–36. doi:10.1007/s00289-011-0516-x

    Article  Google Scholar 

  5. Wu B, Liang Y, Tan Y, Xie C, Yang L, Zhang F, Liu L, Zhang R, Zhang C, Chen K, Tang X, Sui X (2016) Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer. Materials science & engineering C, Materials for biological applications 59:792–800. doi:10.1016/j.msec

    Article  CAS  Google Scholar 

  6. Ma G, Zhang C, Wang C, Kong D (2016) Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery. J Mater Sci Mater Med 27(1):1701–1715. doi:10.1007/s10856-015-5610-4

    Article  Google Scholar 

  7. Wycisk A, Döring A, Schneider M, Schönhoff M, Kuckling D (2015) Synthesis of β-cyclodextrin-based star block copolymers with thermo-responsive behavior. Polymers 7(5):921–938. doi:10.3390/polym7050921

    Article  CAS  Google Scholar 

  8. García-Olaiz GD, Cortez-Lemus NA (2015) Synthesis and characterization of four and six-arm star-shaped poly(ε-caprolactone)-b-poly(N-vinylcaprolactam): micellar and core degradation studies. React Funct Polym 88:16–23. doi:10.1016/j.reactfunctpolym

    Article  Google Scholar 

  9. Garofalo C, Capuano G, Reverchon E, Pappalardo D (2014) Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 15(1):403–415. doi:10.1021/bm401812r

    Article  CAS  Google Scholar 

  10. Zhao YM, Wang ZY, Yang F (2005) Characterization of poly(D,L-lactic acid) synthesized by direct melt polymerization and its application in Chinese traditional medicine compound prescription microspheres. J Appl Polym Sci 97 (1):195–200. doi:10.1002/app.21746

  11. Liu R, Huang SS, Ma GH, Su ZG (2006) Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloid Surf B-Biointerfaces 51(1):30–38. doi:10.1016/j.colsurfb

    Article  CAS  Google Scholar 

  12. Frounchi M, Shamshiri S (2015) Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers. J Biomed Mater Res A 103(5):1893–1898. doi:10.1002/jbm.a.35317

    Article  Google Scholar 

  13. Hu Y, Jiang X, Yang C, Chen J, Yang Y (2003) Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 24(13):2395–2404. doi:10.1016/s0142-9612(03)00021-8

    Article  CAS  Google Scholar 

  14. Dong P, Wang X, Gu Y, Luo F, Guo G, Wei Y, Qian Z (2010) Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf A Physicochem Eng Asp 358(1–3):128–134. doi:10.1016/j.colsurfa

    Article  CAS  Google Scholar 

  15. Jelonek K, Li S, Kasperczyk J, Marcinkowski A (2015) Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. Int J Pharm 485(1–2):357–364. doi:10.1016/j.ijpharm

    Article  CAS  Google Scholar 

  16. Chan DP, Owen SC, Shoichet MS (2013) Double click: dual functionalized polymeric micelles with antibodies and peptides. Bioconjug Chem 24(1):105–113. doi:10.1021/bc300511a

    Article  CAS  Google Scholar 

  17. Logie J, Owen SC, McLaughlin CK, Shoichet MS (2014) PEG-graft density controls polymeric nanoparticle micelle stability. Chem Mater 26(9):2847–2855. doi:10.1021/cm500448x

    Article  CAS  Google Scholar 

  18. Dai Z, Piao L, Zhang X, Jing X (2004) Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions. Colloid & Polymer Science 282(4):343–350. doi:10.1007/s00396-003-0937-7

    Article  CAS  Google Scholar 

  19. Zeng X, Mei L, Huang L, Feng SS (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25):6058–6067. doi:10.1016/j.biomaterials

    Article  CAS  Google Scholar 

  20. Dai X-H, Jin H, Cai M-H, Zhou Z-P, Pan J-M, Yan Y-S, Sun L (2015) Fabrication of thermosensitive, star-shaped poly(L-lactide)-block-poly(N-isopropylacrylamide) copolymers with porphyrin core for photodynamic therapy. React Funct Polym 89:9–17. doi:10.1016/j.reactfunctpolym

    Article  CAS  Google Scholar 

  21. Baimark Y, Srisa-ard M (2012) Preparation of drug-loaded microspheres of linear and star-shaped poly(D,L-lactide)s and their drug release behaviors. J Appl Polym Sci 124 (5):3871–3878. doi:10.1002/app.35473

  22. Zhang X, Cheng J, Zhong Z, Zhuo R (2010) Miktoarm copolymers bearing one poly(ethylene glycol) chain and several poly(ε-caprolactone) chains on a hyperbranched polyglycerol core. Macromolecules 43(16):6671–6677. doi:10.1021/ma100653u

    Article  CAS  Google Scholar 

  23. Nabid MR, Tabatabaei Rezaei SJ, Entezami AA, Oskooie HA, Heravi MM (2011) Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer 52(13):2799–2809. doi:10.1016/j.polymer

    Article  CAS  Google Scholar 

  24. Teng LJ, Nie WY, Zhou YF, Song LY, Chen PP (2015) Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 132(27):7. doi:10.1002/app.42213

    Article  Google Scholar 

  25. Zhao Y, Wang Z, Yang F (2005) Characterization of poly(D,L-lactic acid) synthesized by direct melt polymerization and its application in Chinese traditional medicine compound prescription microspheres. J Appl Polym Sci 97 (1):195–200. doi:10.1002/app.21746

  26. Chen YX, Yang ZY, Liu C, Yang J, Sun HF, Zhang ZP, Kong DL, Song CX (2013) Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid). Int J Nanomedicine 8:4315–4326. doi:10.2147/ijn.s51629

    Google Scholar 

  27. Soderling EM, Hietala-Lenkkeri AM (2010) Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol 60(1):25–29. doi:10.1007/s00284-009-9496-6

    Article  CAS  Google Scholar 

  28. Tao W, Zeng X, Xiong Q, Ouyang C, Mei L (2013) Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater 9(11):8910–8920. doi:10.1016/j.actbio

    Article  CAS  Google Scholar 

  29. Ghassemi AH, van Steenbergen MJ, Jiskoot W, Crommelin DJA, Hennink WE (2009) Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly (lactic-co-hydroxymethyl glycolic acid). J Control Release 138(1):57–63. doi:10.1016/j.jconrel

    Article  CAS  Google Scholar 

  30. Jie P, Venkatraman SS, Huat GL (2005) Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. J Control Release 110(1):20–33. doi:10.1016/j.jconrel

    Article  CAS  Google Scholar 

  31. Zhou Q-H, Lin J, Li L-D, Shang L (2015) Biodegradable micelles self-assembled from miktoarm star block copolymers for MTX delivery. Colloid Polym Sci 293(8):2291–2300. doi:10.1007/s00396-015-3610-z

    Article  CAS  Google Scholar 

  32. Lee SJ, Bae Y, Kataoka K, Kim SC (2007) In vitro release and in vivo anti-tumor efficacy of doxorubicin from biodegradable temperature-sensitive star-shaped PLGA-PEG block copolymer hydrogel. Polym J 40(2):171–176. doi:10.1295/polymj.PJ2007179

    Article  Google Scholar 

  33. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161(2):351–362. doi:10.1016/j.jconrel.2011.10.006

    Article  CAS  Google Scholar 

  34. Zhang Z, Feng SS (2006) Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 27(2):262–270. doi:10.1016/j.biomaterials

    Article  Google Scholar 

  35. Regnier-Delplace C, Siepmann F, Demonchaux P, Bourissou D, Siepmann J (2013) PLGA microparticles with zero-order release of the labile anti-Parkinson drug apomorphine. Int J Pharm 443(1–2):68–79. doi:10.1016/j.ijpharm

    Article  CAS  Google Scholar 

  36. Wang T, Jiang M, Wu Y (2009) Nanoparticles composed of PLGA and hyperbranched poly (amine-ester) as a drug carrier. J Polym Res 17(3):335–345. doi:10.1007/s10965-009-9320-9

    Article  Google Scholar 

  37. Moritz M, Geszke-Moritz M (2015) Mesoporous silica materials with different structures as the carriers for antimicrobial agent. Modeling of chlorhexidine adsorption and release. Appl Surf Sci 356:1327–1340. doi:10.1016/j.apsusc

    Article  CAS  Google Scholar 

  38. Ma C, Pan P, Fujita M, Maeda M (2015) Core-shell structure, biodegradation, and drug release behavior of poly(lactic acid)/poly(ethylene glycol) block copolymer micelles tuned by macromolecular stereostructure. Langmuir: the ACS journal of surfaces and colloids 31(4):1527–1536. doi:10.1021/la503869d

    Article  CAS  Google Scholar 

  39. Essa S, Rabanel JM, Hildgen P (2010) Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Eur J Pharm Biopharm 75(2):96–106. doi:10.1016/j.ejpb

    Article  CAS  Google Scholar 

  40. Zhou D, Shao J, Li G, Chen X (2015) Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer 62:70–76. doi:10.1016/j.polymer

    Article  CAS  Google Scholar 

  41. Yang J, Liang Y, Han CC (2015) Effect of crystallization temperature on the interactive crystallization behavior of poly(l-lactide)-block-poly(ethylene glycol) copolymer. Polymer 79:56–64. doi:10.1016/j.polymer

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang YX, Su T, He B, Li S (2016) Biodegradable poly(ethylene glycol)-poly(ε-carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery. RSC Adv 6(63):58160–58172. doi:10.1039/c6ra06040d

    Article  CAS  Google Scholar 

  43. Lu C, Guo S-r, Zhang Y, Yin M (2006) Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym Int 55(6):694–700. doi:10.1002/pi.2034

    Article  CAS  Google Scholar 

  44. Yan F, Zhang C, Tang L, Sun H, Huang L (2010) The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine 6(1):170–178. doi:10.1016/j.nano

    Article  CAS  Google Scholar 

  45. Zhang C, Wang W, Wang P, Wang Y, Yuan Z (2012) Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 33(7):2187–2196. doi:10.1016/j.biomaterials

    Article  CAS  Google Scholar 

  46. Tang XL, Cai SY, Chen HB, Sun LL (2013) Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res Lett 8:12. doi:10.1186/1556-276x-8-420

    Article  Google Scholar 

  47. Trindade RA, Kiyohara PK, da Costa MHB (2012) PLGA microspheres containing bee venom proteins for preventive immunotherapy. Int J Pharm 423(1):124–133. doi:10.1016/j.ijpharm

    Article  CAS  Google Scholar 

  48. D'Aurizio E, van Steenbergen MJ, Siepmann F, Siepmann J, Hennink WE, Di Stefano A (2011) Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug. Int J Pharm 409(1–2):289–296. doi:10.1016/j.ijpharm

    Article  Google Scholar 

  49. Yuan MW, He ZG, Yuan ML (2014) Synthesis and characterization of star polylactide by ring-opening polymerization of L-lactic acid O-carboxyanhydride. Polym Bull 71(6):1331–1347. doi:10.1007/s00289-014-1125-2

    Article  CAS  Google Scholar 

  50. Gaignaux A, Siepmann F, Siepmann J, De Vriese C, Goole J, Amighi K (2012) Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm 437(1–2):20–28. doi:10.1016/j.ijpharm

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the National Natural Science Foundation of China (Grant No. 51403003), Anhui Provincial Natural Science Foundation (1408085ME86), Scientific Research Fund of Anhui Provincial Education Department (KJ2016A791), Startup Foundation for Doctors of Anhui University, and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyan Nie.

Ethics declarations

The work described has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, A., Zhou, Y., Chen, P. et al. Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid Polym Sci 295, 1609–1619 (2017). https://doi.org/10.1007/s00396-017-4141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4141-6

Keywords

Navigation