Skip to main content
Log in

Improved fouling resistance of poly(vinylidene fluoride) membrane modified with poly(acryloyl morpholine)-based amphiphilic copolymer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An amphiphilic copolymer of poly(methyl methacrylate)-co-poly(N-acryloylmorpholine) (PMMA-co-PACMO) was synthesized via radical copolymerization. The copolymer was directly blended with poly(vinylidene fluoride) (PVDF) to prepare flat membranes using the phase inversion technology. During membrane formation, the hydrophilic PACMO chains were preferably segregated onto membrane surface, which endowed the PVDF/PMMA-co-PACMO membranes with the enhanced hydrophilicity. The prepared PVDF/PMMA-co-PACMO membranes showed lower protein adsorption than pristine PVDF membrane, due to the elimination of interaction force between membrane and protein. With the increase of copolymer concentration in the casting solution, the macrovoids were gradually formed at the cross section of the PVDF/PMMA-co-PACMO membranes. Filtration experiments indicated that the total and irreversible membrane fouling ratios were significantly suppressed via the incorporation of PMMA-co-PACMO. The flux recovery ratio of the PVDF/PMMA-co-PACMO membrane was as high as 98.4%. These results suggested that the hydrophilic modification by blending amphiphilic copolymer PMMA-co-PACMO was a feasible approach to improve anti-fouling property of PVDF membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi HY, Xue LX, Gao AL, Fu YY, Zhou QB, Zhu LJ (2016) Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J Membr Sci 498:39–47. doi:10.1016/j.memsci.2015.09.065

    Article  CAS  Google Scholar 

  2. Zhou ZP, Wu XF (2015) Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation. Mater Lett 160:423–427. doi:10.1016/j.matlet.2015.08.003

    Article  CAS  Google Scholar 

  3. Liu HY, Zhang GQ, Zhao CQ, Liu JD, Yang FL (2015) Hydraulic power and electric field combined antifouling effect of a novel conductive poly(aminoanthraquinone)/reduced grapheme oxide nanohybrid blended PVDF ultrafiltration membrane. J Mater Chem a 3:20277–20287. doi:10.1039/C5TA05306D

    Article  CAS  Google Scholar 

  4. Boo C, Lee J, Elimelech M (2016) Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ Sci Technol 50:12275–12282. doi:10.1021/acs.est.6b03882

    Article  CAS  Google Scholar 

  5. Woo SH, Lee JS, Lee HH, Park J, Min BR (2015) Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics. ACS Appl Mater Interfaces 7:16466–16477. doi:10.1021/acsami.5b03797

    Article  CAS  Google Scholar 

  6. Shen X, Zhao YP, Chen L (2015) Polycation-grafted poly(vinylidene fluoride) membrane with biofouling resistance. Chem Eng Technol 38:859–866. doi:10.1002/ceat.201400582

    Article  CAS  Google Scholar 

  7. Zhao XZ, Xuan HX, Qin AW, Liu DP, He CJ (2015) Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder. RSC Adv 5:64526–64533. doi:10.1039/C5RA08705H

    Article  CAS  Google Scholar 

  8. Qin Q, Hou ZC, Lu XF, Bian XK, Chen LF, Shen LG, Wang S (2013) Microfiltration membranes prepared from poly(N-vinyl-2-pyrrolidone) grafted poly(vinylidene fluoride) synthesized by simultaneous irradiation. J Membr Sci 427:303–310. doi:10.1016/j.memsci.2012.09.059

    Article  CAS  Google Scholar 

  9. Cai T, Neoh KG, Kang ET (2011) Poly(vinylidene fluoride) graft copolymer membranes with “clickable” surfaces and their functionalization. Macromolecules 44:4258–4268. doi:10.1021/ma2002728

    Article  CAS  Google Scholar 

  10. Zhao T, Zhang LF, Zhang ZB, Zhou NC, Cheng ZP, Zhu XL (2011) A novel approach to modify poly(vinylidene fluoride) via iron-mediated atom transfer radical polymerization using activators generated by electron transfer. J Polym Sci Pol Chem 49:2315–2324. doi:10.1002/pola.24651

    Article  CAS  Google Scholar 

  11. Lin NJ, Yang HS, Chang Y, Tung KL, Chen WH, Cheng HW, Hsiao SW, Aimar P, Yamamoto K, Lai JY (2013) Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance. Langmuir 29:10183–10193. doi:10.1021/la401336y

    Article  CAS  Google Scholar 

  12. Ojajuni O, Holder S, Cavalli G, Lee J, Saroj DP (2016) Rejection of caffeine and carbamazepine by surface-coated PVDF hollow-fiber membrane system. Ind Eng Chem Res 55:2417–2425. doi:10.1021/acs.iecr.5b04055

    Article  CAS  Google Scholar 

  13. Zhao XZ, He CJ (2015) Efficient preparation of super antifouling PVDF ultrafiltration membrane with one step fabricated zwitterionic surface. ACS Appl Mater Interfaces 7:17947–17953. doi:10.1021/acsami.5b04648

    Article  CAS  Google Scholar 

  14. Shin IH, Hong S, Lim SJ, Son YS, Kim TH (2017) Surface modification of PVDF membrane by radiation-induced graft polymerization for novel membrane bioreactor. J Ind Eng Chem 46:103–110. doi:10.1016/j.jiec.2016.10.020

    Article  CAS  Google Scholar 

  15. Sun M, Wu QY, Xu J, He F, Brown AP, Ye YM (2016) Vapor-based grafting of crosslinked poly(N-vinyl pyrrolidone) coatings with tuned hydrophilicity and anti-biofouling properties. J Mater Chem B 4:2669–2678. doi:10.1039/C6TB00076B

    Article  CAS  Google Scholar 

  16. Kotte MR, Kuvarega AT, Cho M, Mamba BB, Diallo MS (2015) Mixed matrix PVDF membranes with in situ synthesized PAMAM dendrimer-like particles: a new class of sorbents for Cu(II) recovery from aqueous solutions by ultrafiltration. Environ Sci Technol 49:9431–9442. doi:10.1021/acs.est.5b01594

    Article  CAS  Google Scholar 

  17. Wei Y, Chu HQ, Dong BZ, Li X, Xia SJ, Qiang ZM (2011) Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 272:90–97. doi:10.1016/j.desal.2011.01.013

    Article  CAS  Google Scholar 

  18. Wang QY, Wang ZW, Zhang J, Wang J, Wu ZC (2014) Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalance monitoring. RSC Adv 4:43590–43598. doi:10.1039/C4RA07274J

    Article  CAS  Google Scholar 

  19. Zhang JG, Xu ZW, Mai W, Min CY, Zhou BM, Shan MJ, Li YL, Yang CY, Wang Z, Qian XM (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem a 1:3101–3111. doi:10.1039/C2TA01415G

    Article  CAS  Google Scholar 

  20. Chen X, Bi SY, Shi CC, He Y, Zhao LZ, Chen L (2013) Temperature-sensitive membranes prepared from blends of poly(vinylidene fluoride) and poly(N-isopropylacrylamides) microgels. Colloid Polym Sci 291:2419–2428. doi:10.1007/s00396-013-2985-y

    Article  CAS  Google Scholar 

  21. Razzaghi MH, Safekordi A, Tavakolmoghadam M, Rekabdar F, Hemmati M (2014) Morphological and separation performance study of PVDF/CA blend membranes. J Membr Sci 470:547–557. doi:10.1016/j.memsci.2014.07.026

    Article  Google Scholar 

  22. Ma WZ, Chen SJ, Zhang J, Wang XL (2009) Crystallization behavior and hydrophilicity of poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) ternary blends. Colloid Polym Sci 287:147–155. doi:10.1007/s00396-008-1958-z

    Article  CAS  Google Scholar 

  23. Park SY, Kim YJ, Kwak SY (2016) Versatile surface charge-mediated anti-fouling UF/MF membrane comprising charged hyperbranched polyglycerols (HPGs) and PVDF membranes. RSC Adv 6:88959–88966. doi:10.1039/C6RA19020K

    Article  CAS  Google Scholar 

  24. Wang YZ, Lin HB, Xiong Z, Wu ZY, Yu XM, Wang Y, Liu F (2016) Investigation of abnormal thermoresponsive PVDF membranes on casting solution, membrane morphology and filtration performance. RSC Adv 6:27485–27493. doi:10.1039/C5RA28060E

    Article  CAS  Google Scholar 

  25. Ma WZ, Rajabzadeh S, Shaikh AR, Kakihana Y, Sun YC, Matsuyama H (2016) Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. J Membr Sci 514:429–439. doi:10.1016/j.memsci.2016.05.021

    Article  CAS  Google Scholar 

  26. Chang HH, Chen SC, Lin DJ, Cheng LP (2014) The effect of Tween-20 additive on the morphology and performance of PVDF membranes. J Membr Sci 466:302–312. doi:10.1016/j.memsci.2014.05.011

    Article  CAS  Google Scholar 

  27. Liu F, Xu YY, Zhu BK, Zhang F, Zhu LP (2009) Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. J Membr Sci 345:331–339. doi:10.1016/j.memsci.2009.09.020

    Article  CAS  Google Scholar 

  28. Venault A, Liu YH, Wu JR, Yang HS, Chang Y, Lai JY, Aimar P (2014) Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly(ethyleneglycol) methacrylate blend. J Membr Sci 450:340–350. doi:10.1016/j.memsci.2013.09.004

    Article  CAS  Google Scholar 

  29. Hashim NA, Liu F, Li K (2009) A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. J Membr Sci 345:134–141. doi:10.1016/j.memsci.2009.08.032

    Article  CAS  Google Scholar 

  30. Koh JK, Kim YW, Ahn SH, MIN BR, Kim JH (2010) Antifouling poly(vinylidene fluoride) ultrafiltration membranes containing amphiphilic comb polymer additive. J Polym Sci Pol Phys 48:183–189. doi:10.1002/polb.21887

    Article  CAS  Google Scholar 

  31. Shen JL, Zhang Q, Yin Q, Cui ZL, Li WX, Xing WH (2017) Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J Membr Sci 521:95–103. doi:10.1016/j.memsci.2016.09.006

    Article  CAS  Google Scholar 

  32. Zhang PY, Xu ZL, Ma XH, Yang H, Wei YM, Wu WZ (2014) Preparation and characterization polyvinylidene fluoride membranes from water and ethanol coagulants via in situ free radical polymerization. Polym Adv Technol 25:1044–1053. doi:10.1002/pat.3349

    Article  CAS  Google Scholar 

  33. Chen WJ, Su YL, Peng JM, Zhao XT, Jiang ZY, Dong YN, Zhang Y, Liang YG, Liu JZ (2011) Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environ Sci Technol 45:6545–6552. doi:10.1021/es200994n

    Article  CAS  Google Scholar 

  34. Fan XC, Su YL, Zhao XT, Li YF, Zhang RN, Ma TY, Liu YN, Jiang ZY (2016) Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J Membr Sci 499:56–64. doi:10.1016/j.memsci.2015.10.026

    Article  CAS  Google Scholar 

  35. Liu BC, Chen C, Li T, Crittenden J, Chen YS (2013) High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. J Membr Sci 445:66–75. doi:10.1016/j.memsci.2013.05.043

    Article  CAS  Google Scholar 

  36. Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608. doi:10.1021/la0004653

    Article  CAS  Google Scholar 

  37. Gao CL, Li GZ, Xue H, Yang W, Zhang FB, Jiang SY (2010) Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 31:1486–1492. doi:10.1016/j.biomaterials.2009.11.025

    Article  CAS  Google Scholar 

  38. Chiang YC, Chang Y, Higuchi A, Chen WY, Ruaan RC (2009) Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Membr Sci 339:151–159. doi:10.1016/j.memsci.2009.04.044

    Article  CAS  Google Scholar 

  39. Li Q, Bi QY, Zhou B, Wang XL (2012) Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization. Appl Surf Sci 258:4707–4717. doi:10.1016/j.apsusc.2012.01.064

    Article  CAS  Google Scholar 

  40. Li JH, Li MZ, Miao J, Wang JB, Shao XS, Zhang QQ (2012) Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive. Appl Surf Sci 258:6398–6405. doi:10.1016/j.apsusc.2012.03.049

    Article  CAS  Google Scholar 

  41. Shen X, Zhao YP, Chen L (2013) The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance. Biofouling 29:991–1003. doi:10.1080/08927014.2013.823484

    Article  CAS  Google Scholar 

  42. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189. doi:10.1021/cr020371t

    Article  CAS  Google Scholar 

  43. Yi Z, Zhu LP, Zhang H, Zhu B, Xu YY (2014) Ionic liquids as co-solvents for zwitterionic copolymers and the preparation of poly(vinylidene fluoride) blend membranes with dominated β-phase crystals. Polymer 55:2688–2696. doi:10.1016/j.polymer.2014.04.025

    Article  CAS  Google Scholar 

  44. Jo YS, van der Vlies AJ, Gantz J, Thacher TN, Antonijevic S, Cavadini S, Demurtas D, Stergiopulos N, Hubbell JA (2009) Micelles for delivery of nitric oxide. J Am Chem Soc 131:14413–14418. doi:10.1021/ja905123t

    Article  CAS  Google Scholar 

  45. Li W, Nakayama M, Akimoto J, Okano T (2011) Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles. Polymer 52:3783–3790. doi:10.1016/j.polymer.2011.06.026

    Article  CAS  Google Scholar 

  46. Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T (2011) Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules 12:1414–1418. doi:10.1021/bm2000956

    Article  CAS  Google Scholar 

  47. Liu J, Shen X, Zhao YP, Chen L (2013) Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind Eng Chem Res 52:18392–18400. doi:10.1021/ie403456n

    Article  CAS  Google Scholar 

  48. Shen X, Liu J, Feng X, Zhao YP, Chen L (2015) Preliminary investigation on hemocompatibility of poly(vinylidene fluoride) membrane grafted with acryloylmorpholine via ATRP. J Biomed Mater Res A 103:683–692. doi:10.1002/jbm.a.35213

    Article  Google Scholar 

  49. Cho EC, Kim DH, Cho K (2008) Contact angles of oils on solid substrates in aqueous media: correlation with AFM data on protein adhesion. Langmuir 24:9974–9978. doi:10.1021/la801444q

    Article  CAS  Google Scholar 

  50. de Lambert B, Charreyre MT, Chaix C, Pichot C (2007) Poly(N-tert-butyl acrylamide-b-N-acryloylmorpholine) amphiphilic block copolymers via RAFT polymerization: synthesis, purification and characterization. Polymer 48:437–447. doi:10.1016/j.polymer.2006.11.059

    Article  Google Scholar 

  51. Fares MM, Al-Shboul AM (2012) Stimuli pH-responsive (N-vinyl imidazole-co-acryloylmorpholine) hydrogels; mesoporous and nanoporous scaffolds. J Biomed Mater Res A 100:863–871. doi:10.1002/jbm.a.33304

    Article  Google Scholar 

  52. Ran F, Nie SQ, Zhao WF, Li J, Su BH, Sun SD, Zhao CS (2011) Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomater 7:3370–3381. doi:10.1016/j.actbio.2011.05.026

    Article  CAS  Google Scholar 

  53. Shen X, Zhao YP, Feng X, Zhang Q, Chen L (2013) Temperature-sensitive PVDF hollow fiber membrane fabricated at different air gap lengths. Polym Eng Sci 53:2519–2526. doi:10.1002/pen.23504

    Article  CAS  Google Scholar 

  54. Liu YN, Su YL, Zhao XT, Zhang RN, Ma TY, He MR, Jiang ZY (2016) Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. J Membr Sci 499:406–417. doi:10.1016/j.memsci.2015.10.056

    Article  CAS  Google Scholar 

  55. Shen X, Yin XB, Zhao YP, Chen L (2015) Improved protein fouling resistance of PVDF membrane grafted with the polyampholyte layers. Colloid Polym Sci 293:1205–1213. doi:10.1007/s00396-015-3510-2

    Article  CAS  Google Scholar 

  56. Wu TF, Zhou BM, Zhu T, Shi J, Xu ZW, Hu CS, Wang JJ (2015) Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv 5:7880–7889. doi:10.1039/c4ra13476a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Prof. Li Chen and Prof. Yiping Zhao for membrane characterization at Tianjin Polytechnic University of China. This research is financially supported by Yunnan Applied Basic Research Projects of China (Grant No. 2015FD047) and Innovation Training Program of Chinese College Students (Grant No. 201610684007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Xie, T., Wang, J. et al. Improved fouling resistance of poly(vinylidene fluoride) membrane modified with poly(acryloyl morpholine)-based amphiphilic copolymer. Colloid Polym Sci 295, 1211–1221 (2017). https://doi.org/10.1007/s00396-017-4117-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4117-6

Keywords

Navigation