Colloid and Polymer Science

, Volume 295, Issue 5, pp 939–944 | Cite as

Macroporous microspheres and microspheroidal particles from polyhydromethylsiloxane

  • P. Pospiech
  • J. Chojnowski
  • U. Mizerska
  • W. Fortuniak
  • S. Slomkowski
  • J. Stolarski
Short Communication


Polysiloxane macroporous microspheres and macroporous spheroidal particles were generated from a linear siloxane polymer using a simple emulsion procedure. Osmotic pressure produced by nano-dispersed ionic salt solution in polysiloxane droplets formed in aqueous emulsion is proposed as a mechanism of macropore formation. The competition between cross-linking of the polymer and osmotic swelling of the microspheres governs the shape and porosity of the particles which were characterized by SEM, 29Si MAS NMR, mercury intrusion porosimetry, and X-ray computed tomography.

Graphical Abstract


Macroporous microspheres Polysiloxane microspheres Spheroidal particles Polyhydromethylsiloxane Macroporous particles 



The financial support from the National Science Centre (NCN), grant 2013/11/B/ST5/01615, is highly appreciated. Micro-CT scans were performed in the NanoFun laboratory co-financed by the European Regional Development Fund within the Innovation Economy Operational Program POIG.02.02.00-00-025/09 (help of K. Janiszewska is greatly appreciated).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2017_4075_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1158 kb)


  1. 1.
    Xiao J, Chen B, Liang X, Zhang R, Li Y (2011) NiO microspheres with tunable porosity and morphology effects for CO oxidation. Catal Sci Technol 1(6):999–1005CrossRefGoogle Scholar
  2. 2.
    Cao X, Dai L, Liu J, Wang L, He J, Deng L, Lei J (2014) Fabrication of ZIF-8@super-macroporous poly(glycidyl methacrylate) microspheres. Inorg Chem Commun 50:65–69CrossRefGoogle Scholar
  3. 3.
    Li Y, Gao F, Wei W, Qu J-B, Ma G-H, Zhou W-Q (2010) Pore size of macroporous polystyrene microspheres affects lipase immobilization. J Mol Catal B Enzym 66(1–2):182–189CrossRefGoogle Scholar
  4. 4.
    Omer-Mizrahi M, Margel S (2010) Synthesis and characterization of uniform polyepoxide micrometer sized particles by redox graft polymerization of glycidyl methacylate on oxidized polystyrene and polydivinylbenzene microspheres for enzyme immobilization. Polymer 51(6):1222–1230CrossRefGoogle Scholar
  5. 5.
    He W, Min D, Zhang X, Zhang Y, Bi Z, Yue Y (2014) Hierarchically nanoporous bioactive glasses for high efficiency immobilization of enzymes. Adv Funct Mater 24(15):2206–2215CrossRefGoogle Scholar
  6. 6.
    Horák D, Kučerová J, Korecká L, Jankovičová B, Palarčík J, Mikulášek P, Bílková Z (2012) New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations. Macromol Biosci 12(5):647–655CrossRefGoogle Scholar
  7. 7.
    Qu J-B, Zhou W-Q, Wei W, Su Z-G, Ma G-H (2008) Chemical modification and characterization of gigaporous polystyrene microspheres as rapid separation of proteins base supports. J Polym Sci, Part A: Polym Chem 46(17):5794–5804CrossRefGoogle Scholar
  8. 8.
    Jaszcz K (2013) Photocrosslinked poly(ester-anhydride) microspheres with macroporous structure. Polym Adv Technol 24(10):873–880CrossRefGoogle Scholar
  9. 9.
    Huang J, Jin N, Katsuda T, Fukuda H, Yamaji H (2009) Immobilization of Escherichia coli cells using polyethyleneimine-coated porous support particles for l-aspartic acid production. Biochem Eng J 46(1):65–68CrossRefGoogle Scholar
  10. 10.
    Kim SY, Hwang J-Y, Shin US (2016) Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene. J Colloid Interface Sci 465:18–25CrossRefGoogle Scholar
  11. 11.
    Zeng J, Peng Y, Pan J, Gao H, Wu R, Yin Y, Yan Y (2015) Convenient synthesis of micron-sized macroporous polymers with dents on their surfaces and excellent adsorption performance for λ-cyhalothrin. Chem Eng J 266:1–11CrossRefGoogle Scholar
  12. 12.
    Kim TK, Yoon JJ, Lee DS, Park TG (2006) Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 27(2):152–159CrossRefGoogle Scholar
  13. 13.
    Elbert DL (2011) Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater 7(1):31–56CrossRefGoogle Scholar
  14. 14.
    Chen S, Gao F, Wang Q, Su Z, Ma G (2013) Double emulsion-templated microspheres with flow-through pores at micrometer scale. Colloid Polym Sci 291(1):117–126CrossRefGoogle Scholar
  15. 15.
    Zhang J, Liu H (2016) A novel approach to preparing polystyrene/Fe3O4 multihollow microspheres with porous walls. Colloid Polym Sci 294(11):1755–1763CrossRefGoogle Scholar
  16. 16.
    Owen MJ (2000) Surface chemistry and applications. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers. Vol 8. Kluwer Academic Publishers, Dordrecht, pp. 213–232CrossRefGoogle Scholar
  17. 17.
    Vakifahmetoglu C, Buldu M, Karakuscu A, Ponzoni A, Assefa D, Soraru GD (2015) High surface area carbonous components from emulsion derived SiOC and their gas sensing behavior. J Eur Ceram Soc 35(16):4447–4452CrossRefGoogle Scholar
  18. 18.
    Ye C, Chen A, Colombo P, Martinez C (2010) Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. J R Soc Interface 7(Suppl 4):S461–S473CrossRefGoogle Scholar
  19. 19.
    Nangrejo M, Bernardo E, Colombo P, Farook U, Ahmad Z, Stride E, Edirisinghe M (2009) Electrohydrodynamic forming of porous ceramic capsules from a preceramic polymer. Mater Lett 63(3–4):483–485CrossRefGoogle Scholar
  20. 20.
    Vakifahmetoglu C, Balliana M, Colombo P (2011) Ceramic foams and micro-beads from emulsions of a preceramic polymer. J Eur Ceram Soc 31(8):1481–1490CrossRefGoogle Scholar
  21. 21.
    Fortuniak W, Chojnowski J, Slomkowski S, Pospiech P, Kurjata J (2013) Route to hydrophilic, hydrophobic and functionalized cross-linked polysiloxane microspheres. Polymer 54(13):3156–3165CrossRefGoogle Scholar
  22. 22.
    Fortuniak W, Chojnowski J, Slomkowski S, Nyczyk-Malinowska A, Pospiech P, Mizerska U (2015) Solid ceramic SiCO microspheres and porous rigid siloxane microspheres from swellable polysiloxane particles. Mater Chem Phys 155:83–91CrossRefGoogle Scholar
  23. 23.
    Mizerska U, Fortuniak W, Pospiech P, Sobczak A, Chojnowski J, Slomkowski S (2015) Hydrophilic–hydrophobic properties of SiOH-loaded and modified polysiloxane microspheres and their interaction with γ-globulin. Polym Adv Technol 26(7):855–864CrossRefGoogle Scholar
  24. 24.
    Mizerska U, Fortuniak W, Pospiech P, Chojnowski J, Slomkowski S (2015) Gamma globulins adsorption on carbofunctional polysiloxane microspheres. J Inorg Organomet Polym Mater 25(3):507–514CrossRefGoogle Scholar
  25. 25.
    Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23(1):9–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • P. Pospiech
    • 1
  • J. Chojnowski
    • 1
  • U. Mizerska
    • 1
  • W. Fortuniak
    • 1
  • S. Slomkowski
    • 1
  • J. Stolarski
    • 2
  1. 1.Centre of Molecular and Macromolecular Studies of the Polish Academy of SciencesLodzPoland
  2. 2.Institute of Paleobiology of the Polish Academy of SciencesWarsawPoland

Personalised recommendations