Skip to main content
Log in

Lyotropic mesophase in amphiphile + aliphatic alcohol mixtures with additions of water: mesomorphic, thermomorphologic, and optical refracting properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Amphiphile + aliphatic alcohol lyotropic systems with addition of water can form micelles with normal, mixed, and inverse type. Such systems display various types of mesophases and exhibit interesting structural, physical, and physicochemical properties. Therefore, lyotropic systems are important objects from both fundamental and application points of view. In this work, shape of anisometric micelles has been determined, and also, the magneto-morphologic properties of textures and optical refractive properties of mesophase have been investigated in hexadecyltrimethylammonium bromide (HDTMABr) + 1-decanol (DeOH) lyotropic system with various additions of water (H2O). Dependences of the magneto-morphologic properties vs. time have been obtained. Temperature and concentration dependences of the optical refractive index have been investigated. The effect of the DeOH/H2O concentration ratio on the refractive properties has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ekwall P (1975) Composition, properties and structures of liquid crystalline phases in systems of amphiphilic compounds. In: Brown GH (ed) Advances in liquid crystals, vol 1. Academic Press, New York/San Francisco/London, pp. 1–145

    Google Scholar 

  2. Lingmann B, Wennerström H (1980) Amphiphile aggregation in aqueous solutions, In: Micelles, Springer-Verlag, Berlin–Heidelberg–New York

  3. Bartusch G, Dörfler HG, Hoffmann H (1992) Behavior and properties of lyotropic-nematic and lyotropic-cholesteric phases. Progr Colloid Polym Sci 89:307–315. doi:10.1007/BFb0116336

    Article  CAS  Google Scholar 

  4. Petrov AG (1999) The Lyotropic state of matter. Molecular physics and living matter physics. Gordon & Breach Science Publishers, London–New York

    Google Scholar 

  5. Burducea G (2004) Lyotropic liquid crystals. I. Specific structures. Rom Rep Phys 56:66–86

    Google Scholar 

  6. Figueiredo Neto AM, Salinas SRA (2005) The physics of Lyotropic liquid crystals: phase transitions and structural properties. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Nesrullajev A (2007) Lyotropic liquid crystals. Amphiphilic systems. Mugla University Press, Mugla

    Google Scholar 

  8. Mukherjee P, Cardinal JP (1976) On micellization processes in aqueous solutions. J Phys Chem 78:882–893. doi:10.1021/j100602a007

    Google Scholar 

  9. Vedenov AA (1984) Physics of solutions. Science Publ, Moscow

    Google Scholar 

  10. Tanford C (1974) Theory of micelle formation in aqueous solutions. J Phys Chem 78:2469–2479

    Article  CAS  Google Scholar 

  11. Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533. doi:10.1021/jp02010r

    Article  CAS  Google Scholar 

  12. Hertel G, Hoffmann H (1988) Lyotropic nematic phases of double chain surfactants. Progr Colloid Polym Sci 76:123–131. doi:10.1007/BFb0114182

    Article  Google Scholar 

  13. Hertel G (1989) Lyotrope nematische Phasen. Der Zusammenhang zwischen Molekülstruktur und Phasenverhalten, PhD Dissertation, Bayreuth University, Bayreuth

  14. Auvray X, Petipas C, Anthore R, Ricco I, Lattes A (1989) X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. Journ Phys Chem 93:7458–7464. doi:10.1021/j100358a040

    Article  CAS  Google Scholar 

  15. Wolf T, Klauβner B, Von Bünau G (1990) Reversible light-induced phase-transition in the system cetyltrimethylammonium bromide–water containing a crown-ether-bearing azobenzene. Progr Colloid Polym Sci 83:176–180

    Article  Google Scholar 

  16. Cortés AB, Valiente M, Rodenas E (1999) Properties of the L and lyotropic phases in CTAB/glycerol/water and CTAB/glyceraldehyde/water systems. Langmuir 15:6658–6603. doi:10.1021/la9817516

    Article  Google Scholar 

  17. Canãdas O, Valiente M, Rodenas E (1998) Study of the cetyltrimethylammonium bromide/1,6-hexanediol/water system. J Colloid Interface Sci 203:294–298. doi:10.1006/jcis.1998.5507

    Article  Google Scholar 

  18. Hiltrop K (2001) Phase chirality of micellar lyotropic liquid crystals. In: Kitzerow H-S, Bahr C (eds) Chirality in liquid crystals. Springer, Berlin, pp. 447–480

    Chapter  Google Scholar 

  19. Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2008) Shear-induced ordering of micellar arrays in the presence of single-walled carbon nanotubes. Chem Comm:2037–2039. doi:10.1039/b18148e

  20. Xsu R, Pank W, Yu J, Huo Q (2007) J. Chen, Chemistry of zeolites and related porous materials: synthesis and structure, Wiley, Singapore

  21. Demus D, Richter L (1980) Textures of liquid crystals. Weinheim, Verlag Chemie

    Google Scholar 

  22. Dierking I (2003) Textures of liquid crystals. Weinheim, Wiley–VCH Verlag

    Book  Google Scholar 

  23. Zimmer JE, White JL (1982) Disclination structures in the carbonaceous mesophase. Adv Liq Cryst 5:157–213

    Article  CAS  Google Scholar 

  24. Götz KG, Heckmann K (1958) The shape of soap micelles and other polyions as obtained from anisotropy of electrical conductivity. J Colloid Sci 13:266–272. doi:10.1016/0095-8522

    Article  Google Scholar 

  25. Heckmann K, Götz KG (1958) Die Bestimmung der Form gelöster Polyionen aus dem Leitfähigkeitsanisotropie-Effekt. Z für Elektrochem 62:281–288. doi:10.1002/bbpc.19580620312

    CAS  Google Scholar 

  26. Rehage H (1982) Rheologische Untersuchungen an viskoelastischen Tensidlösungen, PhD Dissertation, Bayreuth University, Bayreuth

  27. Schwarz G (1956) Zur Theorie der Leifahigkeitsanisotropie von Polyelectroliten in Lösung. Z für Phys 145:563–584. doi:10.1007/BF01332278

    Article  CAS  Google Scholar 

  28. Nesrullajev A, Rustamov FA (1989) Electrophysical properties of lyotropic liquid crystalline systems. Colloid J (Sov) 51:778–781

    Google Scholar 

  29. Nesrullajev A. (1992) Mesomorphism and electrophysics of lyotropic liquid crystalline systems, DSc Dissertation, Institute of Physics, Academy of Sciences, Baku

  30. Tsvetkov VN (1986) Rigid chain polymer molecules. Science Publ, Moscow

    Google Scholar 

  31. Frolov YG (1982) Course of colloid chemistry: surface effects and disperse systems. Science Publ, Moscow

    Google Scholar 

  32. Nesrullajev A (2014) Comparative investigations of phase states, mesomorphic and morphologic properties in hexadecyltrimethyl ammonium bromide/water and hexadecyltrimethyl ammonium bromide/water/1-decanol lyotropic liquid crystalline systems. J Mol Liq 200:425–430. doi:10.1016/j.molliq.2014.10.036

    Article  CAS  Google Scholar 

  33. Steers M, Kleman M, Williams CE (1974) Rẻsultats d’observations au microscope polarisant de la phase smectique du diẻthyl-4-4′-axoxydibenzoate. J de Phys Lett 35:L21–L38. doi:10.1051/jphyslet:0197400350202100

    Article  CAS  Google Scholar 

  34. Asher SA, Pershan DS (1979) Alignment and defect structures in oriented phosphatidylcholine multilayers. Biophys J 27:393–422. doi:10.1016/S0006-3495(79)85225-X

    Article  CAS  Google Scholar 

  35. Candau F, Ballet F, Debauvais F, Wittmann JC (1982) Structural properties and topological defects of swollen polymeric mesophase: low angle X-ray diffraction and optical microscopic studies. J Colloid Interface Sci 87:356–374. doi:10.1016/0021-9797(82)90333-2

    Article  CAS  Google Scholar 

  36. Saupe A (1977) Textures, deformations, and structural order of liquid crystals. J Colloid Interface Sci 58:549–558. doi:10.1016/0021-9797(77)90164-3

    Article  CAS  Google Scholar 

  37. Kurik VM, Lavrentovich OD (1988) Review of topical problems: defects in liquid crystals: homotopy theory and experimental studies. Sov Phys Usp 31:196–224. doi:10.1070/PU1988v031n03ABEH005710

    Article  Google Scholar 

  38. Kurik VM, Lavrentovich OD (1989) Defects in liquid crystals: homeotropic theory and experimental investigations. Usp Fiz Nauk (Sov) 154:381–431. doi:10.1070/PU1988v031n03ABEH005710

    Article  Google Scholar 

  39. Boltenhagen P, Lavrentovich O, Kleman M (1991) Oily streaks and focal conic domains in Lα lyotropic liquid crystals. J de Phys II 1:1233–1252. doi:10.1051/jp2:1991130

    CAS  Google Scholar 

  40. Chistyakov IG (1966) Liquid crystals. Science Publ, Moscow

    Google Scholar 

  41. Sonin AS (1984a) Introduction to the physics of liquid crystals. Science Publ, Moscow

    Google Scholar 

  42. Schneider MB, Webb WW (1984) Undulating paired disclinations (oily streaks) in lyotropic liquid crystals. J de Phys 45:393–422. doi:10.1051/jphys:01984004502037300

    Google Scholar 

  43. Basappa G, Suneel Kumaran V, Nott PR, Ramaswami S, Naik VM, Rout D (1999) Structure and rheology of the defect–gel states of pure and particle–dispersed lyotropic lamellar phases. Europ Phys J B 12:269–276. doi:10.1007/s100510051004

    Article  CAS  Google Scholar 

  44. Özden P, Nesrullajev A, Oktik Ş (2010) Phase states and thermo-morphologic, thermotropic and magneto-morphologic properties of lyotropic mesophases: sodium lauryl sulphate/water/1-decanol liquid crystalline system, Phys. Rev. E 82: 061701 (1-8). DOI: 10.1103/PhysRevE.82.061701.

  45. Sonin AS (1987) Lyotropic nematics. Usp Fiz Nauk 153:273–310. doi:10.1070/PU1987v030n10ABEH002967

    Article  CAS  Google Scholar 

  46. Muniandy SV, Kan CS, Lim SC, Radiman S (2003) Fractal analysis of lyotropic lamellar liquid crystal textures. Physica A 323:107–123. doi:10.1016/S0378-4371(03)00026-8

    Article  CAS  Google Scholar 

  47. Friberg S (1992) Organized solutions: surfactants in science and technology. CRC Press, New York

    Google Scholar 

  48. Nesrullajev A (2013) Structural peculiarities of micelles in lamellar mesophase of lyotropic liquid crystalline systems: shape, sizes and anisometricity. J Mol Liq 187:337–342. doi:10.1016/j.molliq.2013.08.017

    Article  CAS  Google Scholar 

  49. Nesrullajev A (2016) Amphiphile/water/decanol lyotropic liquid crystalline system: study of thermal states of anisometric micelles in nematic-calamitic and nematic-discotic mesophases. Tenside Surf Det 53:265–272

    Article  CAS  Google Scholar 

  50. Yu LJ, Saupe A (1982) Deuteron resonance of D2O of nematic disodium cromoglycate-water system. Mol Cryst Liq Cryst 80:129–134. doi:10.1080/00268948208071026

    Article  CAS  Google Scholar 

  51. Amaral LQ, Gulik IR, Mariani P (1992) Micellar hexagonal phases in lyotropic liquid-crystal. Rev A 46:3548–3550. doi:10.1103/PhysRevA.46.3548

    Article  CAS  Google Scholar 

  52. Itri R, Amaral LQ, Mariani P (1996) Structure of the hexagonal phase of the sodium dodecyl sulfate and water system. Phys Rev E 54:5211–5216. doi:10.1103/PhysRevE.54.5211

    Article  CAS  Google Scholar 

  53. Santin Fulho O, Itri R, Amaral LQ (2000) Decanol effect on the structure of the hexagonal phase in a lyotropic liquid crystal. J Phys B 104:959–964

    Google Scholar 

  54. Amaral LQ (2002) Changes in aggregate form, size and flexibility along phase sequences in lyotropic liquid crystals. Braz J Phys 32:540–547. doi:10.1590/S0103-97332002000300014

    Article  Google Scholar 

  55. Sonin AS (1984b) Introduction to physics of liquid crystals. Science Publ, Moscow

    Google Scholar 

  56. Dierking I, Russell C (2003) Universal scaling laws for the anisotropic growth of SmA liquid crystal batonnets. Physica B 325:281–286. doi:10.1016/S092-4526(02)01540-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Research Foundation of Mugla Sitki Koçman University, Grant No. BAP 15/124.

Funding

This study was funded by the Research Foundation of Mugla Sitki Koçman University, Grant No. BAP 15/124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Nesrullajev.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesrullajev, A. Lyotropic mesophase in amphiphile + aliphatic alcohol mixtures with additions of water: mesomorphic, thermomorphologic, and optical refracting properties. Colloid Polym Sci 295, 837–847 (2017). https://doi.org/10.1007/s00396-017-4068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4068-y

Keywords

Navigation