Skip to main content
Log in

Environmentally benign paints for superhydrophobic coatings

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The environment-friendly water-based paint which can provide superhydrophobic coating surface is successfully prepared by using hydrophobic silica nanoparticles and polyvinylpyrrolidone (PVP) as a functional materials and a protected polymer, respectively, in a mixed solvent containing 58% water and 42% ethanol. The water-based paint contains colloidal particles with size of ca. 1000 nm which form by aggregation of primary particles with size of ca. 50 nm. And the dispersion in the paint showed good stability within 2 weeks. The solid surface coated on glass by using the water-based paint had the highest static contact angle of 151o and good environmental stability under atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kastner U (2001) The impact of rheological modifiers on water-borne coatings. Colloid Suef A 805:183–185

    Google Scholar 

  2. Maestro A, Gonzalez C, Gutierrez JM (2005) Interaction of surfactants with thickeners used in waterborne paints: a rheological study. J Colloid Interface Sci 288:597–605

    Article  CAS  Google Scholar 

  3. Nouri NM, Sekhavat S, Mofidi A (2012) Drag reduction in a turbulent channel flow with hydrophobic wall. J Hydrodyn 24:458–466

    Article  Google Scholar 

  4. Truesdell R, Mammoli A, Vorobieff P, Swol F, Brinker CJ (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97:044504

    Article  Google Scholar 

  5. Liao J, Liu X (2009) Preparation and properties of PDMS-PVAc latices. Mod Chem Ind 29:39–41

    CAS  Google Scholar 

  6. Zhang K et al. (2014) Super water-repellent surfaces: potential application to drag reduction of yachts. Recent Pat Mater Sci 7:71–76

    Article  Google Scholar 

  7. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12:2125–2127

    Article  CAS  Google Scholar 

  8. Tadanaga K, Katata N, Minami T (1997) Super-water-repellent Al2O3 coating films with high transparency. J Am Ceram Soc 80:1040–1042

    Article  CAS  Google Scholar 

  9. Tadanaga K, Katata N, Minami T (1997) Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method. J Am Ceram Soc 80:3213–3216

    Article  CAS  Google Scholar 

  10. Feng L et al. (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41:1221–1223

    Article  CAS  Google Scholar 

  11. Feng L et al. (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  12. Feng L et al. (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014

    Article  CAS  Google Scholar 

  13. Sun T et al. (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360

    Article  CAS  Google Scholar 

  14. Yan H, Tsujii K (2004) Formation of fine uneven structure and its application. JP patent, Application No. P 2004–378147

  15. Wolfs M, Darmanina T, Guittard F (2013) Analogy of morphology in electrodeposited hydrocarbon and fluorocarbon polymers. RSC Adv 3:647–652

    Article  CAS  Google Scholar 

  16. Darmanina T, Guittard F (2013) Highly hydrophobic films with various adhesion by electrodeposition of poly(3,4-bis(alkoxy)thiophene)s. Soft Matter 9:1500–1505

    Article  Google Scholar 

  17. Wolfs M, Darmanin T, Guittard F (2012) Superhydrophobic nanofiber arrays and flower-like structures of electrodeposited conducting polymers. Soft Matter 8:9110–9114

    Article  CAS  Google Scholar 

  18. Darmanin T, Taffin de Givenchy E, Guittard F (2010) Superhydrophobic surfaces of electrodeposited polypyrroles bearing fluorinated liquid crystalline segments. Macromolecules 43:9365–9370

    Article  CAS  Google Scholar 

  19. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) Super water-repellent surfaces resulting from fractal structure. J Phys Chem 100:19512–19517

    Article  CAS  Google Scholar 

  20. Shibuichi S, Yamamoto T, Onda T, Tsujii K (1998) Super water- and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci 208:287–294

    Article  CAS  Google Scholar 

  21. Yan H, Kurogi K, Mayama H, Tsujii K (2005) Environmentally stable super water-repellent poly(alkylpyrrole) films. Angew Chem Int Ed 44:3453–3456

    Article  CAS  Google Scholar 

  22. Kurogi K, Yan H, Mayama H, Tsujii K (2007) Super water-repellent poly(alkylpyrrole) films having environmental stability. J Colloid Interface Sci 312:156–163

    Article  CAS  Google Scholar 

  23. Yan H, Kurogi K, Tsujii K (2007) High oil-repellent poly(alkylpyrrole) films coated with fluorinated alkylsilane by a facile way. Colloids Surf A Physicochem Eng Asp 292:27–31

    Article  CAS  Google Scholar 

  24. Yan H, Hattori Y, Fujisato J, Toshima N (2007) Poly(1-n-octadecylpyrrole) films with “needle”-like morphology. Polym J 39:652–653

    Article  CAS  Google Scholar 

  25. Kurogi K, Yan H, Tsujii K (2008) Importance of pinning effect of wetting in super water-repellent surfaces. Colloids Surf A Physicochem Eng Asp 317:592–597

    Article  CAS  Google Scholar 

  26. Su B, Wang S, Song Y, Jiang L (2011) A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res 4:266–273

    Article  Google Scholar 

  27. Weng CJ, Peng CW, Chang CH, Chang YH, Yeh JM (2012) Corrosion resistance conferred by superhydrophobic fluorinated polyacrylate-silica composite coatings on cold-rolled steel. J Appl Polym Sci 126:E48–E55

    Article  CAS  Google Scholar 

  28. Forny L, Saleh K, Pezron I, Komunjer L, Guigon P (2009) Influence of mixing characteristics for water encapsulation by self-assembling hydrophobic silica nanoparticles. Powder Technol 189:263–269

    Article  CAS  Google Scholar 

  29. Toshima N, Yan H, Shiraishi Y (2007) Recent progress in bimetallic nanoparticles: their preparation, structures and functions. In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size-control. Elsevier, Amsterdam

    Google Scholar 

  30. Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Super oil-repellent surfaces. Angew Chem Int Ed Engl 36:1011–1012

    Article  CAS  Google Scholar 

Download references

Authors’ contributions

K.Z., X.Y., N.Z., and Z.W. did the experiments. K.Z. and H.Y. wrote the manuscript and H.Y. designed the project. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yang, X., Zhu, N. et al. Environmentally benign paints for superhydrophobic coatings. Colloid Polym Sci 295, 709–714 (2017). https://doi.org/10.1007/s00396-017-4053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4053-5

Keywords

Navigation