Skip to main content
Log in

Preparation and optical properties of colloidal Ag0 nanoclusters from reduction of solution ionomer Ag-carboxylate ionic aggregates activated by swelling of covalently attached chain segments

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Small colloidal Ag0 nanoclusters successfully were prepared from solution reaction of CH3COOAg with a copolymer acid, poly(methyl methacrylate-ran-methacrylic acid) (MMA–MAA), in a methanol-containing solvent at room temperature in the dark in the absence of a typical chemical reductant. Tentatively mechanistically, slow PMMA-ionomerisation of the Ag+ ions produces intramolecular –COO–Ag+ aggregate cross-links in the solution, which, upon swelling of the chain segments covalently bound to them, are activated by the resultant elastic forces to dissociate instantaneously at the O–Ag coordination bonds to give bare (i.e. uncoordinated), highly oxidative Ag+ ions, which are subject to reduction by the active α-H atoms of the solvent methanol to make Ag0 nanoclusters supported by the re-formed MMA–MAA; the MMA–MAA acid-copolymer, without itself undergoing any permanent chemical change, serves as a mechanical-activator or, say, catalyst for the mechanochemical reduction of CH3COOAg. This novel, facile approach may universally be extended to fabricate other transition-metal nanoclusters deposited in diverse polymeric matrices.

Ag+-ion solution ionomerisation introduces intramolecular Ag-carboxylate ionic aggregates that subsequently are broken by covalently attached, swollen chain segments and subject to room temperature, dark mechanochemical reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Chart 1
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533–606

    Article  CAS  Google Scholar 

  2. Pool R (1990) Clusters: strange morsels of matter. Science 248:1186–1188

    Article  CAS  Google Scholar 

  3. Klabunde KJ, Habdas J, Cárdenas-Triviño G (1989) Colloidal metal particles dispersed in monomeric and polymeric styrene and methyl methacrylate. Chem Mater 1:481–483

    Article  CAS  Google Scholar 

  4. Olsen AW, Kafafi ZH (1991) Gold cluster-laden polydiacetylenes: novel materials for nonlinear optics. J Am Chem Soc 113:7758–7760

    Article  CAS  Google Scholar 

  5. Perrin J, Despax B, Kay E (1985) Optical properties and microstructure of gold–fluorocarbon-polymer composite films. Phys Rev B 32:719–732

    Article  CAS  Google Scholar 

  6. Haglund Jr RF, Yang L, Magruder III RH, Becker K, Wittig JE, White CW, Zuhr RA, Yang L, Dorsinville R, Alfano RR (1993) Metal-nanocluster composites made by ion implantation: a novel third-order nonlinear material. Proc SPIE 1852:113–124

    CAS  Google Scholar 

  7. Kost KM, Bartak DE, Kazee B, Kuwana T (1990) Electrodeposition of palladium, iridium, ruthenium, and platinum in poly(4-vinylpyridine) films for electrocatalysis. Anal Chem 62:151–157

    Article  CAS  Google Scholar 

  8. Allongue P, Souteyrand E (1990) Metal electrodeposition on semiconductors: part 1. Comparison with glassy carbon in the case of platinum deposition. J Electroanal Chem Interf Electrochem 286:217–237

    Article  CAS  Google Scholar 

  9. Hable CT, Wrighton MS (1991) Electrocatalytic oxidation of methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix. Langmuir 7:1305–1309

    Article  CAS  Google Scholar 

  10. Tano T, Esumi K, Meguro K (1989) Preparation of organopalladium sols by thermal decomposition of palladium acetate. J Colloid Interface Sci 133:530–533

    Article  CAS  Google Scholar 

  11. Aymonier C, Bortzmeyer D, Thomann R, Mülhaupt R (2003) Poly(methyl methacrylate)/palladium nanocomposites: synthesis and characterization of the morphological, thermomechanical, and thermal properties. Chem Mater 15:4874–4878

    Article  CAS  Google Scholar 

  12. Deshmukh RD, Composto RJ (2007) Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem Mater 19:745–754

    Article  CAS  Google Scholar 

  13. Kotlyar A, Perkas N, Amiryan G, Meyer M, Zimmermann W, Gedanken A (2007) Coating silver nanoparticles on poly(methyl methacrylate) chips and spheres via ultrasound irradiation. J Appl Polym Sci 104:2868–2876

    Article  CAS  Google Scholar 

  14. Tu W, Liu H (2000) Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem Mater 12:564–567

    Article  CAS  Google Scholar 

  15. Gross ME, Fisanick GJ, Gallagher PK, Schnoes KJ, Fennell MD (1985) Laser-initiated deposition reactions: microchemistry in organogold polymer films. Appl Phys Lett 47:923–925

    Article  CAS  Google Scholar 

  16. Gross ME, Appelbaum A, Gallagher PK (1987) Laser direct-write metallization in thin palladium acetate films. J Appl Phys 61:1628–1632

    Article  CAS  Google Scholar 

  17. Ohtaki M, Toshima N (1990) Photoreduction of rhodium(III) ions in water with ultraviolet light aiming to prepare the dispersions of ultrafine particles. Chem Lett 19:489–492

    Article  Google Scholar 

  18. Hada H, Yonezawa Y, Yoshida A, Kurakake A (1976) Photoreduction of silver ion in aqueous and alcoholic solutions. J Phys Chem 80:2728–2731

    Article  CAS  Google Scholar 

  19. Kurihara K, Kizling J, Stenius P, Fendler JH (1983) Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions. J Am Chem Soc 105:2574–2579

    Article  CAS  Google Scholar 

  20. Toshima N, Takahashi T, Hirai H (1985) Colloidal platinum catalysts prepared by hydrogen- and photo-reduction in the presence of surfactant. Chem Lett 14:1245–1248

    Article  Google Scholar 

  21. Dolan C, Yuan Y, Jao T-C, Fendler JH (1991) Formation of ultrathin metal island particulate films by the transfer of monolayers of reversed micelle entrapped colloidal particles to solid supports. Chem Mater 3:215–218

    Article  CAS  Google Scholar 

  22. Henglein A, Mulvaney P, Linnert T (1991) Chemistry of Ag n aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss 92:31–44

    Article  CAS  Google Scholar 

  23. Torigoe K, Esumi K (1992) Preparation of colloidal gold by photoreduction of tetracyanoaurate(1-)-cationic surfactant complexes. Langmuir 8:59–63

    Article  CAS  Google Scholar 

  24. Yi KC, Mendieta VS, Castañares RL, Meldrum FC, Wu C, Fendler JH (1995) Gold particulate film formation under monolayers. J Phys Chem 99:9869–9875

    Article  CAS  Google Scholar 

  25. Tanahashi I, Tohda T (1996) Photoinduced formation of small gold particles in silica gels. J Am Ceram Soc 79:796–798

    Article  CAS  Google Scholar 

  26. Yanagi H, Mashiko S, Nagahara LA, Tokumoto H (1998) Photoresponsive formation of gold particles in silica/titania sol–gel films. Chem Mater 10:1258–1264

    Article  CAS  Google Scholar 

  27. Pal A (1998) Photoinitiated gold sol generation in aqueous Triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 46:583–587

    Article  CAS  Google Scholar 

  28. Yanagihara N, Tanaka Y, Okamoto H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797

    Article  Google Scholar 

  29. Mallick K, Wang ZL, Pal T (2001) Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. J Photochem Photobiol A 140:75–80

    Article  CAS  Google Scholar 

  30. Zheng M, Gu M, Jin Y, Jin G (2001) Optical properties of silver-dispersed PVP thin film. Mater Res Bull 36:853–859

    Article  CAS  Google Scholar 

  31. Tanaka T, Yamaguchi K, Yamamoto S (2002) Rhodamine-B-doped and Au(III)-doped PMMA film for three-dimensional multi-layered optical memory. Opt Commun 212:45–50

    Article  CAS  Google Scholar 

  32. Smirnova LA, Aleksandrov AP, Yakimovich NO, Sapogova NV, Kirsanov AV, Soustov LV, Bityurin NM (2005) UV-induced formation of gold nanoparticles in a poly(methyl methacrylate) matrix. Dokl Phys Chem 400:19–21

    Article  CAS  Google Scholar 

  33. Karadas F, Ertas G, Ozkaraoglu E, Suzer S (2005) X-ray-induced production of gold nanoparticles on a SiO2/Si system and in a poly(methyl methacrylate) matrix. Langmuir 21:437–442

    Article  CAS  Google Scholar 

  34. Sarkar A, Kapoor S, Yashwant G, Salunke HG, Mukherjee T (2005) Preparation and characterization of ultrafine Co and Ni particles in a polymer matrix. J Phys Chem B 109:7203–7207

    Article  CAS  Google Scholar 

  35. Han GY, Guo B, Zhang LW, Yang BS (2006) Conductive gold films assembled on electrospun poly(methyl methacrylate) fibrous mats. Adv Mater 18:1709–1712

    Article  CAS  Google Scholar 

  36. Králik M, Hronec M, Lora S, Palma G, Zecca M, Biffis A, Corain B (1995) Microporous poly-N,N-dimethylacrylamide-p-styrylsulfonate-methylene bis(acrylamide): a promising support for metal catalysis. J Mol Cat A 97:145–155

    Article  Google Scholar 

  37. Chan YNC, Craig GSW, Schrock RR, Cohen RE (1992) Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers. Chem Mater 4:885–894

    Article  CAS  Google Scholar 

  38. Abyaneh MK, Pasricha R, Gosavi SW, Kulkarni SK (2006) Thermally assisted semiconductor-like to insulator transition in gold–poly(methylmethacrylate) nanocomposites. Nanotechnology 17:4129–4134

    Article  CAS  Google Scholar 

  39. Hache F, Ricard D, Flytzanis C (1986) Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. J Opt Soc Am B 3:1647–1655

    Article  CAS  Google Scholar 

  40. Bradley JS, Millar JM, Hill EW (1991) Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. J Am Chem Soc 113:4016–4017

    Article  CAS  Google Scholar 

  41. Tsai K-L, Dye JL (1991) Nanoscale metal particles by homogeneous reduction with alkalides or electrides. J Am Chem Soc 113:1650–1652

    Article  CAS  Google Scholar 

  42. Basak D, Karan S, Mallik B (2006) Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method. Chem Phys Lett 420:115–119

    Article  CAS  Google Scholar 

  43. Ye X, Zhou Y, Chen J, Sun Y (2007) Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. Mater Chem Phys 106:447–451

    Article  CAS  Google Scholar 

  44. Meguro K, Torizuka M, Esumi K (1988) The preparation of organo colloidal precious metal particles. Bull Chem Soc Jpn 61:341–345

    Article  CAS  Google Scholar 

  45. Lewis LN, Lewis N (1989) Preparation and structure of platinum group metal colloids: without solvent. Chem Mater 1:106–114

    Article  CAS  Google Scholar 

  46. Yanagihara N, Uchida K, Wakabayashi M, Uetake Y, Hara T (1999) Effect of radical initiators on the size and formation of silver nanoclusters in poly(methyl methacrylate). Langmuir 15:3038–3041

    Article  CAS  Google Scholar 

  47. Longenberger L, Mills G (1995) Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 99:475–478

    Article  CAS  Google Scholar 

  48. Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  49. Tadd E, Zeno A, Zubris M, Dan N, Tannenbaum R (2003) Adsorption and polymer film formation on metal nanoclusters. Macromolecules 36:6497–6502

    Article  CAS  Google Scholar 

  50. Tannenbaum R, Zubris M, Goldberg EP, Reich S, Dan N (2005) Polymer-directed nanocluster synthesis: control of particle size and morphology. Macromolecules 38:4254–4259

    Article  CAS  Google Scholar 

  51. Benetatos NM, Heiney PA, Winey KI (2006) Reconciling STEM and X-ray scattering data from a poly(styrene-ran-methacrylic acid) ionomer: ionic aggregate size. Macromolecules 39:5174–5176

    Article  CAS  Google Scholar 

  52. Khan MA, Idriss Ali KM, Basu SC (1993) IR studies of wood plastic composites. J Appl Polym Sci 49:1547–1551

    Article  CAS  Google Scholar 

  53. Wang L, Chen D (2006) A one-pot approach to the preparation of silver-PMMA “shell-core” nanocomposite. Colloid Polym Sci 284:449–454

    Article  CAS  Google Scholar 

  54. Maréchal Y (1987) IR spectra of carboxylic acids in the gas phase: a quantitative reinvestigation. J Chem Phys 87:6344–6353

    Article  Google Scholar 

  55. Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250

    Article  CAS  Google Scholar 

  56. Guo W, Yuan J, Wang E (2009) Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 23:3395–3397

    Article  Google Scholar 

  57. Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, Zhao B, Li B, Ozaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19:4285–4290

    Article  CAS  Google Scholar 

  58. Michaelis M, Henglein A, Mulvaney P (1994) Composite Pd-Ag particles in aqueous solution. J Phys Chem 98:6212–6215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge with gratitude that this work was supported by the Open Fund of the Hubei Provincial Key Laboratory of Green Materials for Light Industry, China (Contract no. [2013]2-key-3), as well as by the Overseas High-level Talents Scientific-research Starting Fund of Hubei University of Technology, China (Contract no. HBUT-science-[2005]2). We also very much thank Dr. Yan Xiong from MCE of HBUT for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chonggang Wu or Masanori Hara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Hu, T., Ma, N. et al. Preparation and optical properties of colloidal Ag0 nanoclusters from reduction of solution ionomer Ag-carboxylate ionic aggregates activated by swelling of covalently attached chain segments. Colloid Polym Sci 295, 583–599 (2017). https://doi.org/10.1007/s00396-017-4033-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4033-9

Keywords

Navigation