Skip to main content
Log in

Numerical simulation of optical dispersion, group velocity, and waveguide properties of gold and silver nanocolloids and hybrids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work is a numerical study of optical properties of colloids and polymers composed of gold and silver nanoparticles. A numerical method has been used to simulate absorption and dispersion properties of colloids and hybrids composed of gold and silver nanocolloids. For individual nanoparticles, optical susceptibilities and constants are studied considering their limited size effects. A theoretical model is used to relate macroscopic optical behavior of the nanohybrids to the susceptibility of individual particles. Effects of the size and the volume fraction of the particles on the peak and broadening of the absorption and dispersion bands are also discussed. The kind of the solvent in colloids and the host polymer in optical fibers composed of nanoparticles is a key parameter that is investigated. The group velocity of the light propagation in the mentioned hybrids is studied. Subsequently, waveguide properties of optical fibers made of PVA polymer composed of gold and silver nanoparticles are simulated numerically. As the main advantage of this procedure, dispersion and absorption curves of the nanohybrids could be obtained simultaneously. Optical dispersion curves, group velocity curves, and waveguide properties of these nanohybrids are offered for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shik A (1999) Quantum wells; physics and electronics of two-dimensional systems, 1st edn. World Scientific, Hackensack

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, 1st edn. Springer, Berlin

    Book  Google Scholar 

  3. Ehrenreich H, Philipp HR, Segall B (1963) Phys Rev 132:1918

    Article  CAS  Google Scholar 

  4. Ehrenreich H, Philipp HR (1962) Phys Rev 128:1622

    Article  CAS  Google Scholar 

  5. Huang JP, Yu KW (2006) Phys Rep 431:87

    Article  CAS  Google Scholar 

  6. Koushki E, Majles Ara MH (2014) Phys E 61:111

    Article  CAS  Google Scholar 

  7. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Appl Opt 37:5271

    Article  Google Scholar 

  8. Reitz JR, Milford FJ, Christy RW (1979) Foundations of electromagnetic theory, 3rd edn. Addison-Wesley, New York

    Google Scholar 

  9. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  10. Bandyopadhyay S (2012) Physics of nanostructured solid state devices, 1st edn. Springer, New York

    Book  Google Scholar 

  11. Ashcroft NW, Mermin ND (1976) Solid state physics, 1st edn. Saunders College Publishing, New York

    Google Scholar 

  12. Hache F, Richard D, Flytzanis C (1986) J Opt Soc Am B 3:1647

    Article  CAS  Google Scholar 

  13. Link S, El-sayed M (2000) Int Rev Phys Chem 10:409

    Article  Google Scholar 

  14. Pil Jang S, Choi SUS (2007) J Heat Transf 129:617

    Article  Google Scholar 

  15. Warrier Pand Teja A (2011) Nanoscale Res Lett 6:247

    Article  Google Scholar 

  16. Takeda Y, Plaksin OA, Lu J, Kishimoto N (2006) Vacuum 80:776

    Article  CAS  Google Scholar 

  17. Pedrotti FL, Pedrotti LS (1993) Introduction to optics, 2nd edn. Prentice Hall, Saddle River NJ

    Google Scholar 

  18. Rakić AD, Elazar JM, Djurišić AB (1995) Phys Rev E 52:6862

    Article  Google Scholar 

  19. Djurišić AB, Rakić AD, Elazar JM (1997) Phys Rev E 55:4797

    Google Scholar 

  20. Dold B, Mecke R (1965) Optik 22:435

    CAS  Google Scholar 

  21. Winsemius P, Langkeek HP, van Kampen FF (1975) Physica B 79:529

    Article  Google Scholar 

  22. Prasad PN (2004) Nanophotonics, 1st edn. Wiley, New York

    Book  Google Scholar 

  23. Nadjari H, Abasi Azad Z (2012) Optics & laser technology 44:1629

    Article  CAS  Google Scholar 

  24. Majles Ara MH, Dehghani Z, Sahraei R, Daneshfar A, Javadi Z, Divsar F (2012) J Quant Spectrosc Radiat Transf 113:366

    Article  CAS  Google Scholar 

  25. Link S, El-Sayed MA (1999) J Phys Chem B 103:4212

    Article  CAS  Google Scholar 

  26. Lee KC, Lin SJ, Lin CH, Tsai CS, Lu YJ (2008) Surf Coat Technol 202:5339

    Article  CAS  Google Scholar 

  27. Jana NR, Gearheart L, Murphy CJ (2001) Langmuir 17:6782

    Article  CAS  Google Scholar 

  28. Stefan Kooij E, Wormeester H, Martijn Brouwer EA, van Vroonhoven E, van Silfhout A, Poelsema B (2002) Langmuir 18:4401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Koushki.

Ethics declarations

Funding

This study was not funded by any center or institute. But after publication, authors might be inclusive on persuading the protection of the Iran Nanotechnology Initiative Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koushki, E., Farzaneh, A. Numerical simulation of optical dispersion, group velocity, and waveguide properties of gold and silver nanocolloids and hybrids. Colloid Polym Sci 295, 197–203 (2017). https://doi.org/10.1007/s00396-016-3991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3991-7

Keywords

Navigation