Skip to main content
Log in

A practical comparison of photon correlation and cross-correlation spectroscopy in nanoparticle and microparticle size evaluation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Monodisperse standard polystyrene particles were used to determine the differences between two methods for analyzing particle size based on dynamic light scattering—namely photon correlation spectroscopy (PCS) and photon cross-correlation spectroscopy (PCCS). We demonstrate that the cross-correlation technique achieves results more in line with real particle properties not only with respect to monodisperse systems, but also with respect to polydisperse standard polystyrene particle systems. In addition, suspensions of superparamagnetic iron oxide nanoparticles or PLGA (Poly(Lactide-co-Glycolide)) particles were studied by both PCS and PCCS in order to compare the measurements of non-standardized particles. Both methods were suitable for particle size distribution analysis with respect to the studied particle systems, but photon cross-correlation spectroscopy yielded more precise results and was able to distinguish particles with a diameter ratio of 4, whereas PCS showed a monomodal particle size distribution when measuring particles with a diameter ratio of 5. Measurements of non-standard samples confirmed previous findings that PCCS is more suitable for measurements of multi disperse systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tscharnuter W (2006) Photon correlation spectroscopy in particle sizing. In: Meyers RA (ed) Encyclopedia of analytical chemistry: applications, theory and instrumentation. Brookhaven Instruments Corporation, Holtsville 18 p

    Google Scholar 

  2. Li Y, Barron AR (2016) Dynamic light scattering. Open-Stax-CNC, http://cnx.org/contents/P8mNrZNN@1/Dynamic-Light-Scattering

  3. Frisken BJ (2001) Revisiting the method of Cumulants for the analysis of dynamic light-scattering data. App Opt 40:4087–4091. doi:10.1364/AO.40.004087

    Article  CAS  Google Scholar 

  4. Block ID, Scheffold F (2010) Modulated 3D cross-correlation light scattering: improving turbid sample characterization. Rev Sci Instrum 81:123107 . doi:10.1063/1.35189617 p

    Article  Google Scholar 

  5. Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93. doi:10.1016/j.jcis.2006.09.013

    Article  CAS  Google Scholar 

  6. Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158. doi:10.1006/jcis.1998.5769

    Article  CAS  Google Scholar 

  7. LS Instruments GmbH (2011) Cross-correlation dynamic light scattering (DLS) method and system. 10156420.1. Switzerland, EP 2365313 A1. Patent application, 2011–09-14

  8. Phillies GDJ (1981) Experimental demonstration of multiple-scattering suppression in Quasielastic-light-scattering spectroscopy by homodyne coincidence techniques. Phys Rev A: At Mol Opt Phys 24:1939–1943. doi:10.1103/PhysRevA.24.1939

    Article  CAS  Google Scholar 

  9. Phillies GDJ (1981) Suppression of multiple scattering effects in Quasielastic light scattering by homodyne cross-correlation techniques. J Chem Phys 74:260–262. doi:10.1063/1.440884

    Article  CAS  Google Scholar 

  10. Meyer WV, Cannell DS, Smart AE, Taylor TW, Tin P (1997) Multiple-scattering suppression by cross correlation. App Opt 36:7551–7558. doi:10.1364/AO.36.007551

    Article  CAS  Google Scholar 

  11. Sympatec GmbH (online) Photon cross-correlation spectroscopy. https://www.sympatec.com/EN/PCCS/PCCS.html

  12. Pusey PN (1999) Suppresion of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185. doi:10.1016/S1359-0294(99)00036-9

    Article  CAS  Google Scholar 

  13. Scheffold F, Cerbino R (2007) New trends in light scattering. Curr Opin Colloid Interface Sci 12:50–57

    Article  CAS  Google Scholar 

  14. NanoComposix (2015) Nano composix’s guide to dynamic light scattering measurement and analysis. https://cdn.shopify.com/s/files/1/0257/8237/files/nanoComposix_Guidelines_for_DLS_Measurements_and_Analysis.pdf

  15. Kaszuba M, Connah MT, McNeil-Watson FK, Nobbmann U (2007) Resolving concentrated particle size mixtures using dynamic light scattering. Part Part Syst Charact 24:159–162. doi:10.1002/ppsc.200601035

    Article  Google Scholar 

  16. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M (2014) Comparison of different characterization methods for nanoparticle dispersion before and after aerosolization. Anal Methods 6:7324–7334. doi:10.1039/C4AY01203H

    Article  CAS  Google Scholar 

  17. Atashafrooz Z, Dizaj SM, Sadaghiani AS (2014) Cucurbita pepo Oil as a drug microemulsion formulation: study of phase diagram. Nanomedicine J 1:298–301. doi:10.7508/nmj.2015.05.002

    Google Scholar 

  18. Mahmoudi M, Snat S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and application in chemotherapy. Adv Drug Deliver Rev 63:24–46. doi:10.1016/j.addr.2010.05.006

    Article  CAS  Google Scholar 

  19. Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471. doi:10.2147/IJN.S30320

    Article  CAS  Google Scholar 

  20. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. doi:10.3390/polym3031377

    Article  CAS  Google Scholar 

  21. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830. doi:10.1016/j.biomaterials.2004.01.038

    Article  CAS  Google Scholar 

  22. Siegel SJ, Kahn JB, Metzger K, Winey KI, Werner K, Dan N (2006) Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm 64:287–293. doi:10.1016/j.ejpb.2006.06.009

    Article  CAS  Google Scholar 

  23. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522. doi:10.1016/j.jconrel.2012.01.043

    Article  CAS  Google Scholar 

  24. Prescott JH, Shiau S, Rowell RL (1993) Characterization of polystyrene latexes by hydrodynamic and electrophoretic fingerprinting. Langmuir 9:2071–2076. doi:10.1021/la00032a027

    Article  CAS  Google Scholar 

  25. Vo-Dinh T (2007) Nanotechnology in biology and medicine: methods, devices, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Wells MA, Abid A, Kennedy IM, Barakat AI (2012) Serums proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology 6:837–846. doi:10.3109/17435390.2011.625131

    Article  CAS  Google Scholar 

  27. Bryant G, Thomas JC (1995) Improved particle size distribution measurements using multiangle dynamic light scattering. Langmuir 11:2480–2485. doi:10.1021/la00007a028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Project Nr. LO1211, Materials Research Centre at FCH BUT- Sustainability and Development (National Programme for Sustainability I, Ministry of Education, Youth and Sports of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Burdíková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdíková, J., Mravec, F., Wasserbauer, J. et al. A practical comparison of photon correlation and cross-correlation spectroscopy in nanoparticle and microparticle size evaluation. Colloid Polym Sci 295, 67–74 (2017). https://doi.org/10.1007/s00396-016-3982-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3982-8

Keywords

Navigation