Skip to main content
Log in

Refractive index in relation to solvent effects on the amphiphilic association of n-alkylammonium carboxylates

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Measurements of the refractive index of isotropic solutions of n-alkylammonium carboxylates [CH3(CH2)7 +NH3 O2CR, R = H, n-tridecyl, n-heptadecyl, and 9-anthryl] display concentration dependence related to the degree of surfactant association in pure and mixed solvents of static relative permittivity in the range εr = 2.28–110 at 298 K. Results for n-octylammonium formate comply with: (i) small reverse micelle type aggregates in low εr ≤ 10 solvents, e.g., benzene; (ii) monomers and/or small association complexes in solvents of intermediate relative permittivity (εr ∼ 15–45, e.g., methanol, and acetone:water (50:50 v:v)); and (iii) charged normal micelles in high εr ≥ 78 solvents, e.g., water, and N-methylformamide. In water, the critical micelle concentration (cmc) of n-octylammonium formate (0.27–0.29 mol dm−3) is an order of magnitude higher than in benzene. A large anion group does not inhibit micellization in the case of n-octylammonium 9-anthracene carboxylate in chloroform. Refractometry, along with measurements of the electric conductance of some solutions, yield concordant information on micellar parameters and equilibrium processes compared to results from NMR and dielectric measurements. The solubility and Hamaker constants of n-octylammonium carboxylates in different solvents (εr = 1.8–182) are described, and experimental data are considered in the context of a micelle transition model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  2. Lindman B, Wennerstrom H (1980) Top Curr Chem 87:1–83

    Article  CAS  Google Scholar 

  3. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

  4. Fendler JH, Fendler EJ (1975) Catalysis in micellar and macromolecular systems. Academic Press, New York

    Google Scholar 

  5. Ekwall P, Danielsson I, Stenius P (1972) Aggregation in surfactant systems. In: Kerker M (ed) Surface chemistry and colloids, vol 7. Butterworths, London, pp. 97–145

    Google Scholar 

  6. Fadnavis NW, Deshpande A (2002) Curr Org Chem 6:393–410

    Article  CAS  Google Scholar 

  7. Ohshima H, Makino K (eds) (2014) Colloid and interface science in pharmaceutical research and development, Elsevier, Amsterdam

  8. Lindman B (1987) Zeit Phys Chem Neue Folge Bd 153:15–26

    Article  CAS  Google Scholar 

  9. Forgiarini A, Esquena J, Gonzalez C, Solans C (2001) Langmuir 17:2076–2083

    Article  CAS  Google Scholar 

  10. Eicke HF (1980) Top Curr Chem 87:85–145

    Article  CAS  Google Scholar 

  11. Kitahara A (1970) Micelle formation of cationic surfactants in nonaqueous media. In: Jungerman E (ed) Cationic surfactants. Marcel Dekker, New York, pp. 289–310

    Google Scholar 

  12. Desando MA, Walker S, Calderwood JH (1983) J Chem Phys 78:3238–3244

    Article  CAS  Google Scholar 

  13. Mukerjee P, Mysels KJ (1971) Critical micelle concentrations of aqueous surfactant systems, NSRDS-NBS 36. U.S. Government Printing Office, Washington DC

    Google Scholar 

  14. Tan CH, Huang ZJ, Huang XG (2010) Anal Biochem 401:144–147

    Article  CAS  Google Scholar 

  15. Chiu YC, Lin YW (1996) Colloids Surf A Physicochem Eng Asp 106:23–31

    Article  CAS  Google Scholar 

  16. Tumolo T, Angnes L, Baptista MS (2004) Anal Biochem 333:273–279

    Article  CAS  Google Scholar 

  17. Desando MA, Walker S, Calderwood JH (1983) J Chem Soc Faraday Trans 2(79):1217–1231

    Article  Google Scholar 

  18. Desando MA, Walker S, Calderwood JH (1985) J Mol Liq 31:123–133

    Article  CAS  Google Scholar 

  19. Desando MA, Mallard C, Walker S (1988) J Mol Liq 37:167–179

    Article  CAS  Google Scholar 

  20. Desando MA (1981) Ph.D. Thesis, Dielectric and nuclear magnetic resonance studies of relaxation and micellization in alkylammonium carboxylate surfactant systems, University of Salford, England

  21. Eicke HF, Shepherd JCW (1974) Helv Chim Acta 57:1951–1963

    Article  CAS  Google Scholar 

  22. Hill NE, Vaughan WE, Price AH, Davies M (1969) Dielectric properties and molecular behavior. Van Nostrand Reinhold, London

    Google Scholar 

  23. Davies M (1965) Some electrical and optical aspects of molecular behavior. Pergamon Press, Oxford

    Google Scholar 

  24. Partington JR (1962) An advanced treatise on physical chemistry, vol 4. Longmans, London, p. 78

    Google Scholar 

  25. Batsanov SS (1966) Refractometry and chemical structure. Van Nostrand, Princeton

    Google Scholar 

  26. Clark CHD (1938) The fine structure of matter, vol II. Chapman and Hall Ltd, London

  27. Liu Y, Daum PH (2008) J Aerosol Sci 39:974–986

    Article  CAS  Google Scholar 

  28. Li H, Zhao G, Liu F, Zhang S (2013) J Chem Eng Data 58:1505–1515

    Article  CAS  Google Scholar 

  29. Goual L, Firoozabadi A (2002) AIChE J 48:2646–2663

    Article  CAS  Google Scholar 

  30. Fendler JH (1976) Acc Chem Res 9:153–161

    Article  CAS  Google Scholar 

  31. Muller N (1975) J Phys Chem 79:287–291

    Article  CAS  Google Scholar 

  32. Mukerjee P (1977) In: Mittal KL (ed) Micellization, solubilization, and microemulsions, vol 1. Plenum, New York, p. 171

    Chapter  Google Scholar 

  33. Ruckenstein E, Nagarajan R (1981) J Phys Chem 85:3010–3014

    Article  CAS  Google Scholar 

  34. Desando MA, Lahajnar G, Sepe A (2010) J Colloid Interface Sci 345:338–345

    Article  CAS  Google Scholar 

  35. Mittal KL, Mukerjee P (1977) In: Mittal KL (ed) Micellization, solubilization, and microemulsions, vol 1. Plenum, New York, p. 1

    Chapter  Google Scholar 

  36. Mysels KJ, Mukerjee P (1979) Pure Appl Chem 51:1083–1089

    Google Scholar 

  37. Rosenholm JB (2014) Adv Colloid Interf Sci 205:9–47

    Article  CAS  Google Scholar 

  38. Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  39. Yan Y, Hoffmann H, Makarsky A, Richter W, Talmon Y (2007) J Phys Chem B 111:6374–6382

  40. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, San Diego

    Google Scholar 

  41. Rosenholm JB (2010) Adv Colloid Interf Sci 156:14–34

    Article  CAS  Google Scholar 

  42. Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237

  43. Claesson PM, Kjellin M, Rojas OJ, Stubenrauch C (2006) Phys Chem Chem Phys 8:5501–5514

    Article  CAS  Google Scholar 

  44. Hiemenz PC, Rajagopalan R (eds) (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

  45. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 2(72):1525–1568

  46. Marques EF, Regev O, Khan A, Lindman B (2003) Adv Colloid Interf Sci 100-102:83–104

    Article  CAS  Google Scholar 

  47. Jefferson AE, Sun C, Bond AD, Clarke SM (2011) Acta Cryst E67:o655

    Google Scholar 

  48. Arshid FM, Giles CH, McLure EC, Ogilvie A, Rose TJ, Eaton JC (1955) J Chem  Soc 67–79

  49. Fendler EJ, Constien VG, Fendler JH (1975) J Phys Chem 79:917–926

    Article  CAS  Google Scholar 

  50. Bergstrom LM, Tehrani-Bagha A, Nagy G (2015) Langmuir 31:4644–4653

    Article  Google Scholar 

  51. May S, Ben-Shaul A (2001) J Phys Chem B 105:630–640

    Article  CAS  Google Scholar 

  52. Rosenholm JB (1992) Adv Colloid Interf Sci 41:197–239

    Article  CAS  Google Scholar 

  53. Porte G, Poggi Y, Appell J, Maret G (1984) J Phys Chem 88:5713–5720

    Article  CAS  Google Scholar 

  54. Desando MA, Reeves LW (1986) Can J Chem 64:1823–1828

  55. Desando MA, Lahajnar G, Zupancic I, Reeves LW (1990) J Mol Liq 47:171–180

    Article  CAS  Google Scholar 

  56. Ray A (1971) Nature 231:313–315

    Article  CAS  Google Scholar 

  57. Gopal R, Singh JR (1973) J Phys Chem 77:554–556

    Article  CAS  Google Scholar 

  58. El Seoud OA, Fendler EJ, Fendler JH, Medary RT (1973) J Phys Chem 77:1876–1882

    Article  CAS  Google Scholar 

  59. Gustavsson H, Lindman B (1973) J Chem Soc Chem Comm :93–94

  60. Salim Akhter M, Alawi SM (2003) Colloids Surf A Physicochem Eng Asp 219:281–290

  61. Perche T, Auvray X, Petipas C, Anthore R, Rico I, Lattes A, Bellissent MC (1992) J Phys I France 2:923–942

    Article  CAS  Google Scholar 

  62. Maryott AA, Smith ER (1951) Table of dielectric constants of pure liquids, National Bureau of Standards Circular 514. US Dept of Commerce, Washington DC

    Google Scholar 

  63. Kandori K, Kon-no K, Kitahara A (1984) Bull Chem Soc Jpn 57:3419–3425

  64. Desando MA, Lahajnar G, Friedrich M, Plavec J, Tavcar G (2015) Colloid Polym Sci 293:1409–1423

    Article  CAS  Google Scholar 

  65. Elworthy PH, McIntosh DS (1964) Kolloid-Zeitschrift Zeitschrift Polymere 195:27–34

    Article  CAS  Google Scholar 

  66. Eastoe J, Hollamby MJ, Hudson L (2006) Adv Colloid Interf Sci 128-130:5–15

  67. Shi H, Qi L, Ma J, Wu N (2005) Adv Funct Mater 15:442–450

    Article  CAS  Google Scholar 

  68. Yin Y (ed) (2013) Responsive photonic nanostructures: smart nanoscale optical materials. The Royal Society of Chemistry, Cambridge

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dr. S. Walker (Professor Emeritus; Department of Chemistry, Lakehead University) and Professor J.H. Calderwood (while at the Department of Electrical Engineering, University of Salford) for their guidance and support for the research and to Mr. B.K. Morgan (Lakehead University) for technical assistance. Gratitude is expressed to Mr. V. Desando for computer hardware and software used in the preparation of this work for publication. The reviewers are also thanked for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Desando.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Based on research by the author at the Department of Chemistry, Lakehead University, Thunder Bay, Canada, and the Department of Electrical Engineering, University of Salford, Salford, England.

Electronic supplementary material

ESM 1

(PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desando, M.A. Refractive index in relation to solvent effects on the amphiphilic association of n-alkylammonium carboxylates. Colloid Polym Sci 294, 1789–1805 (2016). https://doi.org/10.1007/s00396-016-3924-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3924-5

Keywords

Navigation