Skip to main content

Advertisement

Log in

O/W interface-assisted hydrothermal synthesis of NiCo2S4 hollow spheres for high-performance supercapacitors

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The NiCo2S4 hollow spheres were prepared by an oil/water (O/W) interface-assisted hydrothermal process using CoCl2 · 6H2O, NiCl2 · 6H2O, ethanediamine, and carbon disulfide (CS2) as raw materials. Powder X-ray diffraction (XRD), UV–Vis absorption spectrum, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS), N2 adsorption-desorption isotherm, and X-ray photoelectron spectroscopy (XPS) were measured to characterize the morphology and microstructure of the prepared NiCo2S4 hollow spheres. When applied as the electrode material for supercapacitor, the NiCo2S4 hollow spheres show outstanding performances. The specific capacitance of the NiCo2S4 hollow spheres is 1753.2 F/g at a current density of 1 A/g. Of the capacity, 77.8 % were retained when the current density increased from 1 to 10 A/g. At a current density of 3 A/g, the specific capacitance of the NiCo2S4 hollow sphere electrode is about 1350.5 F/g after suffering 1000 continuous cycles. The supercapacitor possesses high energy density of 39.0 Wh/kg at a power density of 200 W/kg. The as-prepared NiCo2S4 hollow sphere electrode exhibits high specific capacitance, rate capacity, energy density, and good cycle stability, making it a promising electrode material for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang P, Xu Y, Chen L, Wang X, Mao B, Xie Z, Wang SD, Bao F, Zhang Q (2015) Encapsulated silver nanoparticles can be directly converted to silver nanoshell in the gas phase. Nano Lett 15:8397–8401

    Article  CAS  Google Scholar 

  2. Li Z, Han J, Fan L, Wang M, Tao S, Guo R (2015) The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem Commun 51:3053–3056

    Article  CAS  Google Scholar 

  3. Li Z, Gu A, Sun J, Zhou Q (2016) Facile hydrothermal synthesis of NiS hollow microspheres with mesoporous shells for high-performance supercapacitors. New J Chem 40:1663–1670

    Article  CAS  Google Scholar 

  4. Li D, Qin Q, Duan X, Yang J, Guo W, Zheng W (2013) General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties. ACS Appl Mater Interfaces 5:9095–9100

    Article  CAS  Google Scholar 

  5. Xia J, Li G, Mao Y, Li Y, Shen P, Chen L (2012) Hydrothermal growth of SnS2 hollow spheres and their electrochemical properties. CrystEngComm 14:4279–4283

    Article  CAS  Google Scholar 

  6. Jiang H, Hu Y, Guo S, Yan C, Lee PS, Li C (2014) Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8:6038–6046

    Article  CAS  Google Scholar 

  7. Lou XWD, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  8. Yang Z, Xu F, Zhang W, Mei Z, Pei B, Zhu X (2014) Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J Power Sources 246:24–31

    Article  CAS  Google Scholar 

  9. Wang Y, Zhu Q, Tao L, Su X (2011) Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J Mater Chem 21:9248–9254

    Article  CAS  Google Scholar 

  10. Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  CAS  Google Scholar 

  11. Zhang Q, Wang W, Goebl J, Yin Y (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4:494–507

    Article  CAS  Google Scholar 

  12. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838

    Article  CAS  Google Scholar 

  13. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  CAS  Google Scholar 

  14. Zhang Z, Wang X, Cui G, Zhang A, Zhou X, Xu H, Gu L (2014) NiCo2S4 sub-micron spheres: an efficient non-precious metal bifunctional electrocatalyst. Nanoscale 6:3540–3544

    Article  CAS  Google Scholar 

  15. Xiao J, Zeng X, Chen W, Xiao F, Wang S (2013) High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells. Chem Commun 49:11734–11736

    Article  CAS  Google Scholar 

  16. Wan H, Jiang J, Yu J, Xu K, Miao L, Zhang L, Chen H, Ruan Y (2013) NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15:7649–7651

    Article  CAS  Google Scholar 

  17. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  CAS  Google Scholar 

  18. Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49:10178–10180

    Article  CAS  Google Scholar 

  19. Huang J, Xie Y, Li B, Liu Y, Qian Y, Zhang S (2000) In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Adv Mater 12:808–811

    Article  CAS  Google Scholar 

  20. Hu JS, Guo Y, Liang HP, Wan LJ, Bai CL, Guo Wang YG (2004) Interface assembly synthesis of inorganic composite hollow spheres. J Phys Chem B 108:9734–9738

    Article  CAS  Google Scholar 

  21. Jiang X, Xie Y, Lu J, Zhu L, He W, Liu X (2002) Low temperature interface-mineralizing route to hollow CuS, CdS, and NiS spheres. Can J Chem 80:263–268

    Article  CAS  Google Scholar 

  22. Lin JY, Chou SW (2013) Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochem Commun 37:11–14

    Article  CAS  Google Scholar 

  23. Hu L, Wu L, Liao M, Hu X, Fang X (2012) Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv Funct Mater 22:998–1004

    Article  CAS  Google Scholar 

  24. Cui B, Lin H, Liu YZ, Li J-B, Sun P, Zhao XC, Liu CJ (2009) Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J Phys Chem C 113:14083–14087

    Article  CAS  Google Scholar 

  25. Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79:577–583

    Article  CAS  Google Scholar 

  26. Xu J, Gao P, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5:5333–5339

    Article  CAS  Google Scholar 

  27. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  CAS  Google Scholar 

  28. Naujalis E, Čepytė J, Padarauskas A (2003) Speciation of Co(II), Co(III), and Cu(II) in ethylenediamine solutions by capillary electrophoresis. Anal Bioanal Chem 376:759–762

    Article  CAS  Google Scholar 

  29. Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) Hollow spheres: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater 24:2155–2162

    Article  CAS  Google Scholar 

  30. Li ZC, Xu J (2016) Facile hydrothermal synthesis of flowerlike MnO2 constructed by ultrathin nanosheets for supercapacitors. Biointerface Res Appl Chem 6:1070–1074

    Google Scholar 

  31. Li Z, Han J, Fan L, Guo R (2016) In-situ controllable growth of α-Ni(OH)2 with different morphologies on reduced graphene oxide sheets and capacitive performance for supercapacitors. Colloid Polym Sci 294:681–689

    Article  CAS  Google Scholar 

  32. Wang H, Gao Q, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7:2454–2459

    CAS  Google Scholar 

  33. Mondal C, Ganguly M, Manna PK, Yusuf SM, Pal T (2013) Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor. Langmuir 29:9179–9187

    Article  CAS  Google Scholar 

  34. Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J (2010) Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim Acta 55:6830–6835

    Article  CAS  Google Scholar 

  35. Yin J, Park J (2014) Electrochemical investigation of copper/nickel oxide composites for supercapacitor applications. Int J Hydrog Energ 39:16562–16568

    Article  CAS  Google Scholar 

  36. Cheng H, Su AD, Li S, Nguyen ST, Lu L, Lim CYH, Duong HM (2014) Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chem Phys Lett 601:168–173

    Article  CAS  Google Scholar 

  37. Yang J, Lian L, Ruan H, Xie F, Wei M (2014) Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim Acta 136:189–194

    Article  CAS  Google Scholar 

  38. Lee JS, Shin DH, Jun J, Lee C, Jang J (2014) Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors. ChemSusChem 7:1676–1683

    Article  CAS  Google Scholar 

  39. Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun MS, Tong Y (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155

    Article  CAS  Google Scholar 

  40. Liu D, Wang Q, Qiao L, Li F, Wang D, Yang Z, He D (2012) Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes. J Mater Chem 22:483–487

    Article  CAS  Google Scholar 

  41. Li Z, Han J, Fan L, Guo R (2015) Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm 17:1952–1958

    Article  CAS  Google Scholar 

  42. Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5:11427–11433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21273004), the Innovation Program for Graduate Students in Universities of Jiangsu Province (No. KYZZ15_0361), and the Priority Academic Program Development of Jiangsu Higher Education Institutions. We also acknowledge the Testing Center of Yangzhou University providing the service for materials’ characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Han or Rong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qu, Y., Wang, M. et al. O/W interface-assisted hydrothermal synthesis of NiCo2S4 hollow spheres for high-performance supercapacitors. Colloid Polym Sci 294, 1325–1332 (2016). https://doi.org/10.1007/s00396-016-3897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3897-4

Keywords

Navigation