Characterization of the mechanical properties of cross-linked serum albumin microcapsules: effect of size and protein concentration


A microfluidic technique is used to characterize the mechanical behavior of capsules that are produced in a two-step process: first, an emulsification step to form droplets, followed by a cross-linking step to encapsulate the droplets within a thin membrane composed of cross-linked proteins. The objective is to study the influence of the capsule size and protein concentration on the membrane mechanical properties. The microcapsules are fabricated by cross-linking of human serum albumin (HSA) with concentrations from 15 to 35 % (w/v). A wide range of capsule radii (∼40–450 μm) is obtained by varying the stirring speed in the emulsification step. For each stirring speed, a low threshold value in protein concentration is found, below which no coherent capsules could be produced. The smaller the stirring speed, the lower the concentration can be. Increasing the concentration from the threshold value and considering capsules of a given size, we show that the surface shear modulus of the membrane increases with the concentration following a sigmoidal curve. The increase in mechanical resistance reveals a higher degree of cross-linking in the membrane. Varying the stirring speed, we find that the surface shear modulus strongly increases with the capsule radius: its increase is two orders of magnitude larger than the increase in size for the capsules under consideration. It demonstrates that the cross-linking reaction is a function of the emulsion size distribution and that capsules produced in batch through emulsification processes inherently have a distribution in mechanical resistance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Andry M C, Edwards-Lévy F, Lévy M C (1996) Free amino group content of serum albumin microcapsules. III. A study at low pH values. Int J Pharm 128:197–202

    CAS  Article  Google Scholar 

  2. 2.

    Banquet S, Gomez E, Nicol L, Edwards-Lévy F, Henry J P, Cao R, Schapman D, Dautreaux B, Lallemand F et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124:1059–1069

    Article  Google Scholar 

  3. 3.

    Barthès-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222

    Article  Google Scholar 

  4. 4.

    Carin M, Barthès-Biesel D, Edwards-Lévy F, Postel C, Andrei D C (2003) Compression of biocompatible liquid-filled HSA-alginate capsules: determination of the membrane mechanical properties. Biotechnol Bioeng 82:207–212

    CAS  Article  Google Scholar 

  5. 5.

    Chu T, Salsac A V, Leclerc E, Barthès-Biesel D, Wurtz H, Edwards-Lévy F (2011) Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: discrimination of the cross-linking degree. J Colloid Interface Sci 355(1):81–88

    CAS  Article  Google Scholar 

  6. 6.

    Chu T, Salsac A V, Barthès-Biesel D, Griscom L, Edwards-Lévy F, Leclerc E (2013) Fabrication and in-situ characterization of microcapsules in a microfluidic system. Microfluid Nanofluid 14(1):309–317

    CAS  Article  Google Scholar 

  7. 7.

    Diaz A, Barthès-Biesel D (2002) Entrance of a bioartificial capsule in a pore. CMES 3(3):321–337

    Google Scholar 

  8. 8.

    Dimova R, Aranda S, Bezlyepkina N, Nikolov V, Riske K, Lipowsky R (2006) A practical guide to giant vesicles. Probing the membrane nano regime via optical microscopy. J Phys: Condens Matter 18:S1151–S1176

    CAS  Google Scholar 

  9. 9.

    Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and ricm. Eur Phys J E 12:215–221

    CAS  Article  Google Scholar 

  10. 10.

    Edwards-Lévy F (2011) Microparticulate drug delivery systems based on serum albumin. In: Serum albumin: structure, functions, and health impact. Nova Science Publishers, New York

  11. 11.

    Glycerine Producer’s Association (1963) Physical properties of glycerine and its solutions. New York

  12. 12.

    Granicka L (2014) Nanoencapsulation of cells within multilayer shells for biomedical applications. J Nanosci Nanotechnol 14:705–716

    CAS  Article  Google Scholar 

  13. 13.

    Hochmuth R (2000) Micropipette aspiration of living cells (review). J Biomechanics 33:15–22

    CAS  Article  Google Scholar 

  14. 14.

    Hu X Q, Sévénié B, Salsac A V, Leclerc E, Barthès-Biesel D (2013) Characterization of membrane properties of capsules flowing in a square–section microfluidic channel: effects of the membrane constitutive law. Phys Rev E 87:063008

    Article  Google Scholar 

  15. 15.

    Kolesnikova T, Skirtach A, Möhwald H (2013) Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opin Drug Deliv 10:47–58

    CAS  Article  Google Scholar 

  16. 16.

    Lam P, Gambari R (2014) Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 178:25–45

    CAS  Article  Google Scholar 

  17. 17.

    Lefebvre Y, Barthès-Biesel D (2007) Motion of a capsule in a cylindrical tube: effect of membrane pre-stress. J Fluid Mech 589:157–181

    CAS  Article  Google Scholar 

  18. 18.

    Lefebvre Y, Leclerc E, Barthès-Biesel D, Walter J, Edwards-Lévy F (2008) Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys Fluids 20:1–10

    Article  Google Scholar 

  19. 19.

    de Loubens C, Deschamps J, Georgelin M, Charrier A, Edwards-Levy F, Leonetti M (2014) Mechanical characterization of cross-linked serum albumin microcapsules. Soft Matter 10:4561–4568

    CAS  Article  Google Scholar 

  20. 20.

    de Loubens C, Deschamps J, Boedec G, Leonetti M (2015) Stretching of capsules in an elongation flow, a route to constitutive law. J Fluid Mech 767:1469–7645

    Article  Google Scholar 

  21. 21.

    Lucas N, Legrand R, Breton J, Déchelotte P, Edwards-Lévy F, Fetissov S (2015) Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight. Neuroscience 290:445–453

    CAS  Article  Google Scholar 

  22. 22.

    Lévy M C, Lefebvre S, Andry M C, Manfait M (1995) Fourier transform infrared spectroscopic studies of cross-linked human serum albumin microcapsules. 3. Influence of terephthaloyl chloride concentration on spectra and correlation with microcapsule morphology and size. J Pharm Sci 84(2):161–165

    Article  Google Scholar 

  23. 23.

    Orive G, Hernández R M, Gascón A R, Calafiore R, Chang T M S, de Vos P, Hortelano G, Hunkeler D, Lacík L, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22:87–92

    CAS  Article  Google Scholar 

  24. 24.

    Rachik M, Barthès-Biesel D, Carin M, Edwards-Lévy F (2006) Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J Colloid Interf Sci 301:217–226

    CAS  Article  Google Scholar 

  25. 25.

    Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  Google Scholar 

  26. 26.

    Shields C, Reyes C, López G (2003) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.nd. Lab Chip 15:1230–1249

    Article  Google Scholar 

  27. 27.

    Sukhorukov G, Möhwald H (2007) Multifunctional cargo systems for biotechnology. Trends Biotechnol 25:93–98

    CAS  Article  Google Scholar 

  28. 28.

    Thorsen T, Roberts R W, Arnold F H, Quake S R (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    CAS  Article  Google Scholar 

  29. 29.

    Tripp B, Magda J, Andrade J (1995) Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics. J Colloid Interf Sci 173:16–27

    CAS  Article  Google Scholar 

  30. 30.

    Wierenga P, Egmond M R, Voragen A G J, de Jong HHJ (2006) The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state. J Colloid Interf Sci 299:850–857

    CAS  Article  Google Scholar 

  31. 31.

    Yano Y (2012) Kinetics of protein unfolding at interfaces. J Phys: Condens Matter 503101

Download references


Part of the measurements on the small capsules were performed by Océane Ly and Van Tuan Dang.

Author information



Corresponding authors

Correspondence to Marc Leonetti or Anne-Virginie Salsac.

Ethics declarations


The research study was funded by the French Agence Nationale de la Recherche (CAPSHYDR grant ANR-11-BS09-013 and the Labex MS2T ANR-11-IDEX-0004-02, Labex MEC ANR-10-LABX-0092, A*MIDEX project ANR-11-IDEX-0001-02 within the program “Investment for the Future”) and by the French Ministry of Research (Pilcam2 grant).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

P.Y. Gires and J. Gubspun contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gubspun, J., Gires, P., Loubens, C.d. et al. Characterization of the mechanical properties of cross-linked serum albumin microcapsules: effect of size and protein concentration. Colloid Polym Sci 294, 1381–1389 (2016).

Download citation


  • Microcapsules
  • Interfacial cross-linking
  • Serum albumin
  • Microfluidics
  • Mechanical properties
  • Identification