Advertisement

Colloid and Polymer Science

, Volume 294, Issue 8, pp 1381–1389 | Cite as

Characterization of the mechanical properties of cross-linked serum albumin microcapsules: effect of size and protein concentration

  • Jonathan Gubspun
  • Pierre-Yves Gires
  • Clément de Loubens
  • Dominique Barthès-Biesel
  • Julien Deschamps
  • Marc Georgelin
  • Marc LeonettiEmail author
  • Eric Leclerc
  • Florence Edwards-Lévy
  • Anne-Virginie SalsacEmail author
Original Contribution

Abstract

A microfluidic technique is used to characterize the mechanical behavior of capsules that are produced in a two-step process: first, an emulsification step to form droplets, followed by a cross-linking step to encapsulate the droplets within a thin membrane composed of cross-linked proteins. The objective is to study the influence of the capsule size and protein concentration on the membrane mechanical properties. The microcapsules are fabricated by cross-linking of human serum albumin (HSA) with concentrations from 15 to 35 % (w/v). A wide range of capsule radii (∼40–450 μm) is obtained by varying the stirring speed in the emulsification step. For each stirring speed, a low threshold value in protein concentration is found, below which no coherent capsules could be produced. The smaller the stirring speed, the lower the concentration can be. Increasing the concentration from the threshold value and considering capsules of a given size, we show that the surface shear modulus of the membrane increases with the concentration following a sigmoidal curve. The increase in mechanical resistance reveals a higher degree of cross-linking in the membrane. Varying the stirring speed, we find that the surface shear modulus strongly increases with the capsule radius: its increase is two orders of magnitude larger than the increase in size for the capsules under consideration. It demonstrates that the cross-linking reaction is a function of the emulsion size distribution and that capsules produced in batch through emulsification processes inherently have a distribution in mechanical resistance.

Keywords

Microcapsules Interfacial cross-linking Serum albumin Microfluidics Mechanical properties Identification 

Notes

Acknowledgments

Part of the measurements on the small capsules were performed by Océane Ly and Van Tuan Dang.

Compliance with ethical standards

Funding

The research study was funded by the French Agence Nationale de la Recherche (CAPSHYDR grant ANR-11-BS09-013 and the Labex MS2T ANR-11-IDEX-0004-02, Labex MEC ANR-10-LABX-0092, A*MIDEX project ANR-11-IDEX-0001-02 within the program “Investment for the Future”) and by the French Ministry of Research (Pilcam2 grant).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Andry M C, Edwards-Lévy F, Lévy M C (1996) Free amino group content of serum albumin microcapsules. III. A study at low pH values. Int J Pharm 128:197–202CrossRefGoogle Scholar
  2. 2.
    Banquet S, Gomez E, Nicol L, Edwards-Lévy F, Henry J P, Cao R, Schapman D, Dautreaux B, Lallemand F et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124:1059–1069CrossRefGoogle Scholar
  3. 3.
    Barthès-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222CrossRefGoogle Scholar
  4. 4.
    Carin M, Barthès-Biesel D, Edwards-Lévy F, Postel C, Andrei D C (2003) Compression of biocompatible liquid-filled HSA-alginate capsules: determination of the membrane mechanical properties. Biotechnol Bioeng 82:207–212CrossRefGoogle Scholar
  5. 5.
    Chu T, Salsac A V, Leclerc E, Barthès-Biesel D, Wurtz H, Edwards-Lévy F (2011) Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: discrimination of the cross-linking degree. J Colloid Interface Sci 355(1):81–88CrossRefGoogle Scholar
  6. 6.
    Chu T, Salsac A V, Barthès-Biesel D, Griscom L, Edwards-Lévy F, Leclerc E (2013) Fabrication and in-situ characterization of microcapsules in a microfluidic system. Microfluid Nanofluid 14(1):309–317CrossRefGoogle Scholar
  7. 7.
    Diaz A, Barthès-Biesel D (2002) Entrance of a bioartificial capsule in a pore. CMES 3(3):321–337Google Scholar
  8. 8.
    Dimova R, Aranda S, Bezlyepkina N, Nikolov V, Riske K, Lipowsky R (2006) A practical guide to giant vesicles. Probing the membrane nano regime via optical microscopy. J Phys: Condens Matter 18:S1151–S1176Google Scholar
  9. 9.
    Dubreuil F, Elsner N, Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and ricm. Eur Phys J E 12:215–221CrossRefGoogle Scholar
  10. 10.
    Edwards-Lévy F (2011) Microparticulate drug delivery systems based on serum albumin. In: Serum albumin: structure, functions, and health impact. Nova Science Publishers, New YorkGoogle Scholar
  11. 11.
    Glycerine Producer’s Association (1963) Physical properties of glycerine and its solutions. New YorkGoogle Scholar
  12. 12.
    Granicka L (2014) Nanoencapsulation of cells within multilayer shells for biomedical applications. J Nanosci Nanotechnol 14:705–716CrossRefGoogle Scholar
  13. 13.
    Hochmuth R (2000) Micropipette aspiration of living cells (review). J Biomechanics 33:15–22CrossRefGoogle Scholar
  14. 14.
    Hu X Q, Sévénié B, Salsac A V, Leclerc E, Barthès-Biesel D (2013) Characterization of membrane properties of capsules flowing in a square–section microfluidic channel: effects of the membrane constitutive law. Phys Rev E 87:063008CrossRefGoogle Scholar
  15. 15.
    Kolesnikova T, Skirtach A, Möhwald H (2013) Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opin Drug Deliv 10:47–58CrossRefGoogle Scholar
  16. 16.
    Lam P, Gambari R (2014) Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 178:25–45CrossRefGoogle Scholar
  17. 17.
    Lefebvre Y, Barthès-Biesel D (2007) Motion of a capsule in a cylindrical tube: effect of membrane pre-stress. J Fluid Mech 589:157–181CrossRefGoogle Scholar
  18. 18.
    Lefebvre Y, Leclerc E, Barthès-Biesel D, Walter J, Edwards-Lévy F (2008) Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys Fluids 20:1–10CrossRefGoogle Scholar
  19. 19.
    de Loubens C, Deschamps J, Georgelin M, Charrier A, Edwards-Levy F, Leonetti M (2014) Mechanical characterization of cross-linked serum albumin microcapsules. Soft Matter 10:4561–4568CrossRefGoogle Scholar
  20. 20.
    de Loubens C, Deschamps J, Boedec G, Leonetti M (2015) Stretching of capsules in an elongation flow, a route to constitutive law. J Fluid Mech 767:1469–7645CrossRefGoogle Scholar
  21. 21.
    Lucas N, Legrand R, Breton J, Déchelotte P, Edwards-Lévy F, Fetissov S (2015) Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight. Neuroscience 290:445–453CrossRefGoogle Scholar
  22. 22.
    Lévy M C, Lefebvre S, Andry M C, Manfait M (1995) Fourier transform infrared spectroscopic studies of cross-linked human serum albumin microcapsules. 3. Influence of terephthaloyl chloride concentration on spectra and correlation with microcapsule morphology and size. J Pharm Sci 84(2):161–165CrossRefGoogle Scholar
  23. 23.
    Orive G, Hernández R M, Gascón A R, Calafiore R, Chang T M S, de Vos P, Hortelano G, Hunkeler D, Lacík L, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22:87–92CrossRefGoogle Scholar
  24. 24.
    Rachik M, Barthès-Biesel D, Carin M, Edwards-Lévy F (2006) Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J Colloid Interf Sci 301:217–226CrossRefGoogle Scholar
  25. 25.
    Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90CrossRefGoogle Scholar
  26. 26.
    Shields C, Reyes C, López G (2003) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.nd. Lab Chip 15:1230–1249CrossRefGoogle Scholar
  27. 27.
    Sukhorukov G, Möhwald H (2007) Multifunctional cargo systems for biotechnology. Trends Biotechnol 25:93–98CrossRefGoogle Scholar
  28. 28.
    Thorsen T, Roberts R W, Arnold F H, Quake S R (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166CrossRefGoogle Scholar
  29. 29.
    Tripp B, Magda J, Andrade J (1995) Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics. J Colloid Interf Sci 173:16–27CrossRefGoogle Scholar
  30. 30.
    Wierenga P, Egmond M R, Voragen A G J, de Jong HHJ (2006) The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state. J Colloid Interf Sci 299:850–857CrossRefGoogle Scholar
  31. 31.
    Yano Y (2012) Kinetics of protein unfolding at interfaces. J Phys: Condens Matter 503101Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jonathan Gubspun
    • 1
  • Pierre-Yves Gires
    • 2
  • Clément de Loubens
    • 1
  • Dominique Barthès-Biesel
    • 2
  • Julien Deschamps
    • 1
  • Marc Georgelin
    • 1
  • Marc Leonetti
    • 1
    Email author
  • Eric Leclerc
    • 2
  • Florence Edwards-Lévy
    • 3
  • Anne-Virginie Salsac
    • 2
    Email author
  1. 1.IRPHE (UMR CNRS 7342)Aix Marseille Université - Cnrs - Centrale MarseilleMarseilleFrance
  2. 2.Laboratoire de Biomécanique et de Bioingénierie BMBI (UMR CNRS 7338)Université de technologie de Compiègne, Sorbonne université - CNRSCompiègneFrance
  3. 3.Institut de Chimie Moléculaire de Reims ICMR (UMR CNRS 7312)Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations