Skip to main content
Log in

Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In current biomedically oriented research, the development of a biomimetic nanoparticle platform is of interest to provide a molecular toolbox (i.e., allowing easy modular exchange of its parts depending on actual needs while being nontoxic and allowing real-time recognition and tracking using various methods, such as fluorescence). We report the development of germanium(IV) oxide-polysaccharide composite particles possessing these properties. The nanoparticles are based on a crystalline germanium oxide core with a size range of 20–30 and 300–900 nm. Two new simple coating techniques were compared for the preparation of the photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles. The germanium(IV)-based core allows for in situ polysaccharide attachment via direct chelation. In addition, the nanoparticles were coated with thin layer of silicon oxide. After coating, 3-(triethoxysilyl)propyl isocyanate was grafted onto the surface, and the polysaccharides were immobilized on the particle surface via a covalent urethane linkage, which allows for an even more stable polysaccharide coating than that obtained via chelation. This approach provides access to a new material platform for biological track and image applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rieffel J. Chitgupi U, Lovell JF (2015) Small 11(35):4445

  2. Shanka W, Amitabha A (2015) Beilstein J Nanotechnol 6:546

  3. Dobrucki LW, Pan D, Smith AM (2015) Curr Drug Targets 16(6):560

  4. Nakamura H, Jun F, Maeda H (2015) Expert Opin Drug Deliv 12(1):53

  5. Prabhakar U. Maeda H. Jain R, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST. Gabizon A, Grodzinski P, Blakey DC (2013) Cancer Res 73(8):2412

  6. Fidler F, Steinke M, Kraupner A, Gruttner C, Hiller KH, Briel A, Westphal F, Walles H, Jakob PM (2015) IEEE Trans Magn 51(2)

  7. Huang X, Wang Y, Sun X, Choi KY, Liu D, Choi J, Shin TH, Cheon J, Niu G, Chen X (2014) ACS Nano 8(5):4403

  8. Wu Y, Ermakova A, Liu W, Pramanik G, Vu TM, Kurz A, McGuinness L, Naydenov B, Hafner S, Reuter R, Wrachtrup J, Isoya J, Förtsch F, Barth H, Simmet T, Jelezko F, Weil T (2015) Adv Funct Mater 25(42):6576

  9. Kerr CA, de la Rica R (2015) Anal Methods 7:7067

  10. Su S, Wei J, Zhang K, Qiu J. Wang S (2015) Colloid Polym Sci 293(4):1299

  11. Chen P, Wang Z, Zong S, Zhu D, Chen H, Zhang Y, Wu L, Cui Y (2016) Biosens Bioelectron 75:446

  12. Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Macromol Rapid Commun 33(19):1648

  13. Fleming JW (1984) Appl Opt 23:4486

  14. Peng M, Li Y, Gao J, Zhang D, Jiang Z, Sun X (2011) J Phys Chem C 11:11420

  15. Su Y, Liang X, Li S, Chen Y, Zhou Q, Yin S, Meng X, Kong M (2008) Mater Lett 62:1010

  16. Jiang Z, Xie T, Wang GZ, Yuan XY, Ye CH, Cai WP, Meng GW, Li GH, Zhang LD (2009) Mater Lett 59:416

  17. Wu XC, Song WH, Zhao B, Sun YP, Du JJ (2001) Chem Phys Lett 349:210

  18. Laubengayer AW, Morton DS (1932) J Am Chem Soc 54(6):2303

  19. Rimer JD, Roth DD, Vlachos DG, Lobo RF (2007) Langmuir 23(5):2784

  20. Jing C, Hou J, Zhang Y (2008) J Cryst Growth 310:391

  21. Wu W, Zou X, Li Q, Liu B, Liu Bo, Liu R, Liu D, Li Z, Cui W, Liu Z, Li D, Cui T, Zou G (2010) J Nanomater 2011:1

  22. Krishnan V, Gross S, Muller S, Armelao L, Tondello E, Bertagnolli H (2007) J Phys Chem B 111(26):7519

  23. Javadi M, Yang Z, Veinot JCG (2014) Chem Commun 50:6101

  24. Davis TM, Snyder MA, Tsapatsis M (2007) Langmuir 23:12469

  25. Boix E, Puddu V, Perry CC (2014) Dalton Trans 43:16902

  26. Wysokowski M, Motylenko M, Beyer J, Makarova A, Stöcker H, Walter J, Galli R, Kaiser S, Vyalikh D, Bazhenov V, Petrenko I, Stelling A, Molodtsov S, Stawski D, Kurzydłowski K, Langer E, Tsurkan M, Jesionowski T, Heitmann J, Meyer D, Ehrlich H (2015) Nano Res 8(7): 2288

  27. Chiu YW, Huang MH (2009) J Phys Chem C 113:6056

  28. Kawai T, Usui Y, Kon-No K (199) Colloids Surface A: Physicochem Eng Aspects 149:39

  29. Inukai Y, Kaida Y, Yasuda (1997) Anal Chim Acta 343:275

  30. Inukai Y, Chinen T, Matsuda T, Kaida Y, Yasuda S (1998) Anal Chim Acta 371:187

  31. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W (2014) Adv Mater 26:5119

  32. Filippov SK, Sedlacek O, Bogomolova A, Vetrik M, Jirak D, Kovar J, Kucka J, Bals S, Turner S, Stepanek P (2012) Macromol Biosci 12(12):1731

  33. Khan MA, Hogan TP, Shanker B (2008) J Raman Spectrosc 39:893

  34. Gekko K (1978) Agric Biol Chem 1978, 42(6):1287

  35. Al-Oweini R, El-Rassy HJ (2009) Mol Struct 919:140

Download references

Acknowledgments

The authors kindly thank Michal Pekárek and Nikolay Kotov for the FTIR and FT-Raman spectroscopy; Jiřina Hromádková, Alexandra Ostafinska, and Dr. Sabina Krejčíková for electron microscopy; Alexandra Paruzel and Dr. Jana Kovářová for thermogravimetry; Eva Miškovská and Dr. Alexander Zhigunov for XRD and WAXS measurements; and Helena Hlídková and Dr. Daniel Horák for BET. Financial support from the Centre National de la Recherche Scientifique—CNRS, France (project PICS no. 06130), Ministry of Education, Youth and Sports of the Czech Republic (grant no. 7AMB14FR027), the Grant Agency of the Czech Republic (grant no. 13-08336S), the PHC-Barrande program (grant no. 31271XF), and the Ministry of Health of the Czech Republic (grant no. 15-25781A) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lobaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Colloidal properties of polysaccharides; SEM images, number average size distributions (image analysis) and colloidal properties of GeO2 from aqueous solutions; TEM images, number average size distributions (DLS) and colloidal properties of GeO2 from ethanolic solutions and coated GeO2@SiO2; FTIR and FT-Raman spectra; calculation of the crystalline size; thermogravimetry. (PDF 4.10 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobaz, V., Rabyk, M., Pánek, J. et al. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles. Colloid Polym Sci 294, 1225–1235 (2016). https://doi.org/10.1007/s00396-016-3882-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3882-y

Keywords

Navigation