Skip to main content
Log in

Characterization and release kinetics of liposomes inserted by pH-responsive bola-polymer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

One important thing in tumor chemotherapy is to develop the targeting, precise timing, and quantitative drug delivery/release system. According to the weak acid of tumor extracellular environment, a pH-sensitive bola-type triblock copolymer (PEG m -PDPA n -PEG m ) was synthesized and mixed with phospholipid to form functional hybrid liposomes (liposome@Bola). When compared to pure liposome, the stability of the liposome@Bola was enhanced greatly and the drug leakage was inhibited at pH 7.4. However, under pH 6.0, the drug released quickly through the nanopores on the lipid bilayer created by the escape of copolymers. Under a strongly acidic environment, the drug release of liposome@Bola could be blocked again due to the coverage of free copolymers. The kinetic curves of drug release had been modeled by using some frequently used models. It was found that the release of liposome@Bola under pH 6.0 was biphasic with a slow release by means of membrane permeation and a rapid second phase which was released through nanopores on liposome membrane. The results indicated that the pH-responsive liposome@Bola could be expected to be a good potential in controllable drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW-K, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 6:5695–5704

    Article  Google Scholar 

  2. Lin Y-A, Cheetham AG, Zhang P, Ou Y-C, Li Y, Liu G, Hermida-Merino D, Hamley IW, Cui H (2014) Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. ACS Nano 8:12690–12700

    Article  CAS  Google Scholar 

  3. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    Article  CAS  Google Scholar 

  4. Tang H, Chen X, Rui M, Sun W, Chen J, Peng J, Xu Y (2014) Effects of surface displayed targeting ligand GE11 on liposome distribution and extravasation in tumor. Mol Pharm 11:3242–3250

    Article  CAS  Google Scholar 

  5. Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5:3900–3907

    Article  CAS  Google Scholar 

  6. Fukui Y, Fujimoto K (2011) Control in mineralization by the polysaccharide-coated liposome via the counter-diffusion of ions. Chem Mater 23:4701–4708

    Article  CAS  Google Scholar 

  7. Sun Y, Yan Y, Wang M, Chen C, Xu H, Lu JR (2013) Controlled release of hydrophilic guest molecules from photoresponsive nucleolipid vesicles. ACS Appl Mater Interfaces 5:6232–6236

    Article  CAS  Google Scholar 

  8. Liu Q, Chen J, Du J (2014) Asymmetrical polymer vesicles with a “stealthy” outer corona and an endosomal-escape-accelerating inner corona for efficient intracellular anticancer drug delivery. Biomacromolecules 15:3072–3082

    Article  CAS  Google Scholar 

  9. Kim J, Pandya DN, Lee W, Park JW, Kim YJ, Kwak W, Ha YS, Chang Y, An GI, Yoo J (2014) Vivid tumor imaging utilizing liposome-carried bimodal radiotracer. ACS Med Chem Lett 5:390–394

    Article  CAS  Google Scholar 

  10. Zhou J, Zhang X, Li M, Wu W, Sun X, Zhang L, Gong T (2013) Novel lipid hybrid albumin nanoparticle greatly lowered toxicity of pirarubicin. Mol Pharm 10:3832–3841

    Article  CAS  Google Scholar 

  11. Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G (2014) In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J Agric Food Chem 62:2207–2215

    Article  CAS  Google Scholar 

  12. Basel MT, Shrestha TB, Troyer DL, Bossmann SH (2011) Protease-sensitive. polymer-caged liposomes: a method for making highly targeted liposomes using triggered release. ACS Nano 5:2162–2175

    Article  CAS  Google Scholar 

  13. Niu Y, Wang X, Chai S, Chen Z, An X, Shen W (2012) Effects of curcumin concentration and temperature on the spectroscopic properties of liposomal curcumin. J Agric Food Chem 60:1865–1870

    Article  CAS  Google Scholar 

  14. Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7:5091–5101

    Article  CAS  Google Scholar 

  15. Chen K-J, Chaung E-Y, Wey S-P, Lin K-J, Cheng F, Lin C-C, Liu H-L, Tseng H-W, Liu C-P, Wei M-C, Liu C-M, Sung H-W (2014) Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano 8:5105–5115

    Article  CAS  Google Scholar 

  16. Wang H, Liu Z, Wang S, Dong C, Gong X, Zhao P, Chang J (2014) MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging. ACS Appl Mater Interfaces 6:3219–3225

    Article  CAS  Google Scholar 

  17. Pornpattananangkul D, Olson S, Aryal S, Sartor M, Huang C-M, Vecchio K, Zhang L (2010) Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 4:1935–1942

    Article  CAS  Google Scholar 

  18. Remant BK, Chandrashekaran V, Cheng B, Chen H, Pena MM, Zhang J, Montgomery J, Xu P (2014) Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells. Mol Pharm 11:1897–1905

    Article  Google Scholar 

  19. Aili D, Mager M, Roche D, Stevens MM (2011) Hybrid nanoparticle-liposome detection of phospholipase activity. Nano Lett 11:1401–1405

    Article  CAS  Google Scholar 

  20. Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G (2015) Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl Mater Interfaces 7:11695–11712

    Article  CAS  Google Scholar 

  21. Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, Li J, Thamphiwatana S, Lu D, Zhang L (2014) Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 8:2900–2907

    Article  CAS  Google Scholar 

  22. Agmo Hernandez V, Karlsson G, Edwards K (2011) Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir 27:4873–4883

    Article  CAS  Google Scholar 

  23. Choucair A, Lim Soo P, Eisenberg A (2005) Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 21:9308–9313

    Article  CAS  Google Scholar 

  24. Hladky PW (2011) Chemical dosing and first-order kinetics. J Chem Educ 88:776–781

    Article  CAS  Google Scholar 

  25. Aznar E, Sancenon F, Marcos MD, Martinez-Manez R, Stroeve P, Cano J, Amoros P (2012) Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration. Langmuir 28:2986–2996

    Article  CAS  Google Scholar 

  26. Feng R, Zhu W, Song Z, Zhao L, Zhai G, (2013) Novel star-type methoxy-poly(ethylene glycol) (PEG)–poly(ε-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin, Journal of Nanoparticle Research, 15.

  27. Caccavo D, Cascone S, Lamberti G, Barba AA (2015) Modeling the drug release from hydrogel-based matrices. Mol Pharm 12:474–483

    Article  CAS  Google Scholar 

  28. Huang X, Appelhans D, Formanek P, Simon F, Voit B (2012) Tailored synthesis of intelligent polymer nanocapsules: an investigation of controlled permeability and pH-dependent degradability. ACS Nano 6:9718–9726

    Article  CAS  Google Scholar 

  29. Sunoqrot S, Bae JW, Jin SE, Pearson RM, Liu Y, Hong S (2011) Kinetically controlled cellular interactions of polymer-polymer and polymer-liposome nanohybrid systems. Bioconjug Chem 22:466–474

    Article  CAS  Google Scholar 

  30. Pascal J, Ashley CE, Wang Z, Brocato TA, Butner JD, Carnes EC, Koay EJ, Brinker CJ, Cristini V (2013) Mechanistic modeling identifies drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response. ACS Nano 7:11174–11182

    Article  CAS  Google Scholar 

  31. Casalini T, Rossi F, Lazzari S, Perale G, Masi M (2014) Mathematical modeling of PLGA microparticles: from polymer degradation to drug release. Mol Pharm 11:4036–4048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work is provided by the National Natural Science Foundation of China (no. 21276074), the 111 Project of China (no. B08021), and the Fundamental Research Funds for the Centre Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Xia, T., Shang, Y. et al. Characterization and release kinetics of liposomes inserted by pH-responsive bola-polymer. Colloid Polym Sci 294, 1107–1116 (2016). https://doi.org/10.1007/s00396-016-3871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3871-1

Keywords

Navigation