Abstract
Temperature-responsive nanoparticles of cross-linked poly-N-vinylcaprolactam (microgels), stabilized by high molecular weight emulsifier—monohelic hydrophobically modified polyacrylamide—have been synthesized in oil-in-water emulsion. Nanodispersions of spherical particles of about 100 nm in size rather narrowly distributed as defined by dynamic light scattering and TEM and AFM microscopy were stable in time. Electrokinetic potential, which depended on pH, revealed negative charges on nanoparticle surface arisen from hydrolysis of amide groups of polymer-stabilizer. Due to electrosterical stabilization caused by the adsorption of weakly charged polymeric stabilizer, the prepared dispersions exhibited higher stability against an action of electrolytes as compared with sols stabilized with low molecular weight surfactants. The prepared microgels exhibited high stability at high temperatures.
This is a preview of subscription content, access via your institution.









References
Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85:1–33
Tauer K, Gau D, Schulze S, Volkel A, Dimova R (2009) Thermal property changes of poly(N-isopropylacrylamide)microgel particles and block copolymers. Colloid Polym Sci 287:299–312. doi:10.1007/s00396-008-1984-x
Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477
Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429
Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708
Wang Y, Nie J, Chang B, Sun Y, Yang W (2013) Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules 14:3034–3046. doi:10.1021/bm401131w
Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064. doi:10.1016/j.biomaterials.2004.09.008
Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856. doi:10.1039/c2py00485b
Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62
Imaz A, Miranda JI, Ramos J, Forcada J (2008) Evidences of a hydrolysis process in the synthesis of Nvinylcaprolactam-based microgels. Eur Polym J 44:4002–4011. doi:10.1016/j.eurpolymj.2008.09.027
Gao Y, Au-Yeng SCF, Wu C (1999) Interaction between surfactant and poly(N-vinylcaprolactam) microgels. Macromolecules 32:3674. doi:10.1021/ma981756+
Boyko V, Richter S, Pich A, Arndt KF (2003) Poly(N-vinylcaprolactam) microgels. Polymeric stabilization with poly(vinyl alcohol). Colloid Polym Sci 282:127–132. doi:10.1007/s00396-003-0946-6
Boyko V, Richter S, Burchard W, Arndt KF (2007) Chain dynamics in microgels: poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels as examples. Langmuir 23:776–784
Boyko V, Pich A, Lu Y, Richter S, Arndt KF, Adler HJ (2003) Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—synthesis and characterization. Polymer 44:7821–7827. doi:10.1016/j.polymer.2003.09.037
Häntzschel N, Zhang F, Eckert F, Pich A, Winnik MA (2007) Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3:Eu nanoparticles. Langmuir 23:10793–10800
Kirsh YE (1998) Water soluble poly-N-vinylamides: synthesis and physicochemical properties. Wiley, Chichester
Laukkanen A, Wiedmer SK, Varjo S, Riekkola ML, Tenhu H (2002) Stability and thermosensitive properties of various poly-N-vinylcaprolactam microgels. Colloid Polym Sci 280:65–70. doi:10.1021/la050036a
Galant C, Kjniksen AL, Knudsen KD, Helgesen G, Lund R, Laukkanen A, Tenhu H, Nystrom B (2005) Physical properties of aqueous solutions of a thermo-responsive neutral copolymer and an anionic surfactant: turbidity and small-angle neutron scattering studies. Langmuir 21:8010–8018. doi:10.1021/la050036a
Shatalov GV, Verezhnikov VN, Plaksitskaya TV, Kuznetsov VA, Poyarkova TN, Yan’shina AV (2006) Synthesis of N,N-dimethylaminoethyl methacrylate copolymers with N-vinyl caprolactam and their complexing and flocculating behavior. Polym Sci Ser A 48:563–568. doi:10.1134/S0965545X06060022
Peng S, Wu C (2001) Surfactant effect on pH and temperature sensitivities of poly(N-vinylcaprolactam-co-sodium acrylate) microgels. Macromolecules 34:568–571. doi:10.1021/ma0009909
Shatalov G, Churilina E, Kuznetsov V, Verezhnikov V (2007) Copolymerization of N-vinylcaprolactam with N-vinyl(benz)imidazoles and the properties of aqueous solutions of the copolymers. Polym Sci Ser B 49:57–60. doi:10.1134/S1560090407030013
Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume transition and structure of triethyleneglycol dimethacrylate, ethylenglykol dimethacrylate, and N, N′-methylene bis-acrylamide cross-linked poly(N-isopropyl acrylamide) microgels: a small angle neutron and dynamic light scattering study. Colloids Surface A 197:55–67. doi:10.1016/S0927-7757(01)00821-4
Hazot P, Delair T, Pichot C, Chapel JP, Elaissari A (2003) Poly(N-ethylmethacrylamide) thermally-sensitive microgel latexes: effect of the nature of the crosslinker on the polymerization kinetics and physicochemical properties. C R Chim 6:1417–1424. doi:10.1016/j.crci.2003.09.003
Elmas B, Tuncel M, Senel S, Patir S, Tuncel A (2007) Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution. J Colloid Interface Sci 313:174–183. doi:10.1016/j.jcis.2007.04.052
Blagodatskikh I, Tikhonov V, Ivanova E, Landfester K, Khokhlov A (2006) New approach to the synthesis of polyacrylamide in miniemulsified systems. Macromol Rapid Commun 27:1900–1905. doi:10.1002/marc.200600520
Chi W (1999) Column handbook for size exclusion chromatography. Ac Press, New York
ALV-Correlator Software V.3.0. http://www.alvgmbh.de/Download_Area/download_area.html
Gupta KC, Behari K (1986) Cerium (IV)-2-chloroethanol redox-pair initiated polymerization of acrylamide in aqueous medium. J Polym Sci A1(24):767–775
Fernandez MD, Guzman GM (1989) Aqueous polymerization of methyl methacrylate initiated by the redox system Ce(IV)—D-glucose. I: general features and kinetics. Brit Polym J 21:413–419. doi:10.1002/pi.4980210510
Hsu WC, Kuo JF, Chen CY (1992) Aqueous polymerization of acrylamide initiated by cerium(IV)–ethylenediamine tetraacetic acid redox system. J Polym Sci A1(30):2459–2466. doi:10.1002/pola.1992.080301120
Behari K, Argawal U, Das R (1993) Cerium(IV)-sorbose-initiated polymerization of acrylamide and methacrylamide. Polymer 34:4557–4561. doi:10.1016/0032-3861(93)90164-6
Hsu WC, Chen CY, Kuo JF, Wu EM (1994) Aqueous polymerization of acrylamide initiated by cerium(IV)-nitrilotriacetic acid redox initiator. Polymer 35:849–856. doi:10.1016/0032-3861(94)90885-0
Sarac AS (1999) Redox polymerization. Prog Polym Sci 24:1149–1204. doi:10.1016/S0079-6700(99)00026-X
Mahadevaiah DT, Sangappa KBA (2008) Polymerization of acrylonitrile initiated by Ce(IV)‐sucrose redox system: a kinetic study. J Appl Polym Sci 108:3760–3768. doi:10.1002/app.27989
Kobitskaya E (2008) Synthesis of hydrophobically modified polyacrylamide in inverse miniemulsion. Ulm University, Dissertation, http://vts.uni-ulm.de/docs/2008/6558/vts_6558_8942.pdf
Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143:113–194
Kalyanasundaram K, Thomas GK (1977) Environmental effects on vibronic band intensitiesin pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044
Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, Chichester
Schmidt S, Hellweg T, von Klitzing R (2008) Packing density control in p(NIPAM-co-AAc) microgel monolayers: effect of surface charge, pH, and preparation technique. Langmuir 24:12595–12602. doi:10.1021/la801770n
Neiman RE (1980) Ocherki kolloidnoi khimii sinteticheskikh lateksov (Essays of colloid chemistry of synthetic latices). Voronezhskii Gosudarstvennyi Universitet, Voronezh
Yibing G, Steve CF, Au-Yeung CW (1999) Interaction between surfactant and poly(N-vinylcaprolactam) microgels. Macromolecules 32:3674–3677. doi:10.1021/ma981756+
Imaz A, Forcada J (2008) N-vinylcaprolactam-based microgels: synthesis and characterization. J Polym Sci A1(46):2510–2524. doi:10.1002/pola.22583
Sun Sh WP (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam ) in water. J Phys Chem B 115:11609–11618. doi:10.1021/jp2071056
Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica URSS 14:633–662
Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This study was funded by the Ministry of Education and Science of the Russian Federation (grant number 1296).
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Kuznetsov, V.A., Kushchev, P.O., Blagodatskikh, I.V. et al. Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties. Colloid Polym Sci 294, 889–899 (2016). https://doi.org/10.1007/s00396-016-3843-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00396-016-3843-5
Keywords
- Poly-N-vinylcaprolactam nanoparticles
- Microgels
- Hydrophobically modified polyacrylamide
- Colloidal stability
- Thermosensitivity