Colloid and Polymer Science

, Volume 294, Issue 4, pp 657–665 | Cite as

Replacing the solid needle by a liquid one when measuring static and advancing contact angles

  • Ming Jin
  • Raymond Sanedrin
  • Daniel Frese
  • Carsten Scheithauer
  • Thomas Willers
Original Contribution

Abstract

In general, the optical determination of static and advancing contact angle is made on drops applied or extended, respectively, onto a substrate through the use of thin solid needles. Although this method is used extensively, this way of dosing can be time consuming, cumbersome and if not performed meticulously can lead to erroneous results. Herein, we present an alternative way of applying drops onto substrates using a liquid jet produced by a liquid pressure dosing system acting as a “liquid needle”. We performed a comparative static contact angle study on 14 different surfaces with two different liquids (water and diiodomethane) utilizing two different ways of dosing: the conventional solid and a novel liquid needle-based technique. We found, for all but one sample, that the obtained results on μl size drops were comparable within the experimental error bars provided the liquid needle is thin enough. Observed differences are explained by the special characteristics of either way of dosing. In addition, we demonstrate how the liquid pressure-based dosing system facilitates high-speed optical advancing contact angle measurement by expanding a drop from 0.1 to 22 μl within less than 1.2 s but yet providing constant contact angle versus drop base diameter curves. The obtained results were compared with data from tensiometric dynamic Wilhelmy contact angle measurements. These data, in conjunction with sequences of live images of the dosing process of the liquid pressure dosing system, illustrate how this system can replace the solid needle by a liquid needle.

Keywords

Contact angle Advancing contact angle Liquid needle Self assembled monolayers 

References

  1. 1.
    Young T (1805) Phil Trans R Soc Lond:65–87Google Scholar
  2. 2.
    Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann A (1990) Colloids Surf 43(2):151. doi:10.1016/0166-6622(90)80286-D CrossRefGoogle Scholar
  3. 3.
    Eral H, ’t Mannetje D, Oh J (2013) Collied Polym Sci 291(2):247. doi:10.1007/s00396-012-2796-6 CrossRefGoogle Scholar
  4. 4.
    Kwon HM, Paxson AT, Varanasi KK, Patankar NA (2011) Phys Rev Lett 106:036102. doi:10.1103/PhysRevLett.106.036102 CrossRefGoogle Scholar
  5. 5.
    Waghmare PR, Das S, Mitra SK (2013) Soft Matter 9:7437. doi:10.1039/C3SM50981H CrossRefGoogle Scholar
  6. 6.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Science 318(5856):1618. doi:10.1126/science.1148326 CrossRefGoogle Scholar
  7. 7.
    Liu T, Kim CJ (2014) Science 346(6213):1096. doi:10.1126/science.1254787 CrossRefGoogle Scholar
  8. 8.
    Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR (2007) Langmuir 23(13):6875. doi:10.1021/la070100j CrossRefGoogle Scholar
  9. 9.
    Deng X, Mammen L, Butt HJ, Vollmer D (2012) Science 335(6064):67. doi:10.1126/science.1207115 CrossRefGoogle Scholar
  10. 10.
    Rioboo R, Marengo M, Tropea C (2002) Exp Fluids 33(1):112. doi:10.1007/s00348-002-0431-x CrossRefGoogle Scholar
  11. 11.
    Vadillo D, Soucemarianadin A, Delattre C, Roux DCD (2009) Phys Fluids 21(122002):122002CrossRefGoogle Scholar
  12. 12.
    Ukiwe C, Kwok DY (2005) Langmuir 21(2):666. doi:10.1021/la0481288 CrossRefGoogle Scholar
  13. 13.
    Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Phys Fluids 8(3):650CrossRefGoogle Scholar
  14. 14.
    Butt HJ, Roisman IV, Brinkmann M, Papadopoulos P, Vollmer D, Semprebon C (2014) Current Opinion in Colloid and Interface Science 19(4):343. doi:10.1016/j.cocis.2014.04.009 CrossRefGoogle Scholar
  15. 15.
    Weser F, Scheithauer C, Friedrich B (2015) Contact angle measurement apparatus. https://www.google.de/patents/EP2899528A1?cl=en. EP Patent App. EP20,140,152,563
  16. 16.
    Collet P, De Coninck J, Drouiche K, Dunlop F (2013) Collied Polym Sci 291(2):291. doi:10.1007/s00396-012-2839-z CrossRefGoogle Scholar
  17. 17.
    Bormashenko E (2013) Collied Polym Sci 291(2):339. doi:10.1007/s00396-012-2778-8 CrossRefGoogle Scholar
  18. 18.
    Tavana H, Yang G, Yip CM, Appelhans D, Zschoche S, Grundke K, Hair ML, Neumann AW (2006) Langmuir 22(2):628. doi:10.1021/la051715o CrossRefGoogle Scholar
  19. 19.
    Ashurst W, Yau C, Carraro C, Maboudian R, Dugger M (2001) J Microelectromech Syst 10 (1):41. doi:10.1109/84.911090 CrossRefGoogle Scholar
  20. 20.
    Wang A, Tang H, Cao T, Salley SO, Ng KS (2005) J Colloid Interface Sci 291(2):438. doi:10.1016/j.jcis.2005.05.008 CrossRefGoogle Scholar
  21. 21.
    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Rev Mod Phys 81:739. doi:10.1103/RevModPhys.81.739 CrossRefGoogle Scholar
  22. 22.
    Blake TD (2006) J Colloid Interface Sci 299(1):1. doi:10.1016/j.jcis.2006.03.051 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ming Jin
    • 1
  • Raymond Sanedrin
    • 2
  • Daniel Frese
    • 1
  • Carsten Scheithauer
    • 1
  • Thomas Willers
    • 1
  1. 1.KRÜSS GmbHHamburgGermany
  2. 2.KRÜSS USAMatthewsUSA

Personalised recommendations