Skip to main content
Log in

The effect of amino-terminated hyperbranched polymers on the impact resistance of epoxy resins

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel amino-terminated hyperbranched polymer (ATHBP) was synthesized through the end-capping reaction between hyperbranched polymer with hydroxyl group (HBPH) and diethylenetriamine. The chemical structure of ATHBP was characterized by attenuated total internal reflectance infrared spectroscopy (ATR-IR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). The effect of ATHBP content (0–30 wt%) on the impact resistance and glass transition temperature (Tg) of diglycidyl ether of bisphenol-A epoxy resin was studied. The toughness mechanism was discussed by observing the fracture surface morphologies of epoxy thermosets using field emission scanning electron microscopy (FESEM). The results showed that the degree of branching of ATHBP was 0.56. And the introduction of ATHBP could favorably improve the impact strength but not sacrifice the Tg of epoxy resin. For example, the impact strength of 25 wt% formulation was 60.7 % higher than that of the neat epoxy thermoset. FESEM analysis indicated that the toughening mechanism may be attributed to plastic deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shieh JY, Ho TH, Wang CS (1995) Aminosiloxane-modified epoxy resins as microelectronic encapsulants. Die Angewandte Makromolekulare Chemie 224(1):21–32

    Article  CAS  Google Scholar 

  2. Jose J, Joseph K, Pionteck J, Thomas S (2000) PVT behavior of thermoplastic poly(styrene-co-acrylonitrile)-modified epoxy systems: relating polymerization-induced viscoelastic phase separation with the cure shrinkage performance. J Phys Chem B 112(47):14793–14803

    Article  Google Scholar 

  3. Iji M, Kiuchi Y, Soyama M (2003) Flame retardancy and heat resistance of phenol-biphenylene-type epoxy resin compound modified with benzoguanamine. Polyme Advan Technol 14(9):638–644

    Article  CAS  Google Scholar 

  4. Jin F-L, Park S-J (2008) Fracture toughness of difunctional epoxy resin/thermally latent initiator system modified with polyesters. J Ind Eng Chem 14(5):564–567

    Article  CAS  Google Scholar 

  5. Sinh LH, Son BT, Trung NN, Lim D-G, Shin S, Bae J-Y (2012) Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly(ester amide). React Funct Polym 72(8):542–548

    Article  CAS  Google Scholar 

  6. Wang Y, Jing X (2007) Preparation of polystyrene/polyaniline core/shell structured particles and their epoxy-based conductive composites. Polymer Int 56(1):126–131

    Article  CAS  Google Scholar 

  7. Meng Y, Zhang X-H, Du B-Y, Zhou B-X, Zhou X, Qi G-R (2011) Thermosets with core–shell nanodomain by incorporation of core crosslinked star polymer into epoxy resin. Polymer 52(2):391–399

    Article  CAS  Google Scholar 

  8. Okamatsu T, Ochi M (2002) Effect on the toughness and adhesion properties of epoxy resin modified with silyl-crosslinked urethane microsphere. Polymer 43(3):721–730

    Article  CAS  Google Scholar 

  9. Abadyan M, Kouchakzadeh MA, Bagheri R (2012) Fracture toughness of a hybrid rubber modified epoxy. II. Effect of loading rate. J Appl Polymer Sci 125(3):2476–2483

    Article  CAS  Google Scholar 

  10. Abadyan M, Bagheri R, Kouchakzadeh MA (2012) Fracture toughness of a hybrid-rubber-modified epoxy. I. Synergistic toughening. J Appl Polymer Sci 125(3):2467–2475

    Article  CAS  Google Scholar 

  11. RS Drake, DR Egan, and WT Murphy 1983 Elastomer-modified epoxy resins in coatings applications, in Epoxy resin chemistry II. Am Chem Soc, p 1–20

  12. Balakrishnan S, Raghavan D (2003) Chemically functionalized clay epoxy nanocomposites for aerospace applications. Nanotech 3 2003 p:250–253

    Google Scholar 

  13. Tripathi G, Srivastava D (2009) Toughened cycloaliphatic epoxy resin for demanding thermal applications and surface coatings. J Appl Polymer Sci 114(5):2769–2776

    Article  CAS  Google Scholar 

  14. Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites—processing, properties and applications: a review. Compos Part B-Eng 45(1):308–320

    Article  CAS  Google Scholar 

  15. Zhou W, Cai J (2012) Mechanical and dielectric properties of epoxy resin modified using reactive liquid rubber (HTPB). J Appl Polymer Sci 124(5):4346–4351

    Article  CAS  Google Scholar 

  16. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S (2007) Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin—effects of a liquid rubber inclusion. Polymer 48(6):1695–1710

    Article  CAS  Google Scholar 

  17. Thomas R, Sinturel C, Pionteck J, Puliyalil H, Thomas S (2000) In-situ cure and cure kinetic analysis of a liquid rubber modified epoxy resin. Ind Eng Chem Res 51(38):12178–12191

    Google Scholar 

  18. Tao Q, Gan W, Yu Y, Wang M, Tang X, Li S (2004) Viscoelastic effects on the phase separation in thermoplastics modified cyanate ester resin. Polymer 45(10):3505–3510

    Article  CAS  Google Scholar 

  19. Fernández B, Corcuera MA, Marieta C, Mondragon I (2001) Rheokinetic variations during curing of a tetrafunctional epoxy resin modified with two thermoplastics. Eur Polymer J 37(9):1863–1869

    Article  Google Scholar 

  20. Gan W, Yu Y, Wang M, Tao Q, Li S (1984) Viscoelastic effects on the phase separation in thermoplastics-modified epoxy resin. Macromolecules 36(20):7746–7751

    Article  Google Scholar 

  21. Larrañaga M, Martín MD, Gabilondo N, Kortaberria G, Corcuera MA, Riccardi CC, Mondragon I (2004) Cure kinetics of epoxy systems modified with block copolymers. Polym Int 53(10):1495–1502

    Article  Google Scholar 

  22. S He, X Wang, X Guo, K Shi, Z Du and B Zhang. Studies of the properties of a thermosetting epoxy modified with block copolymers. Polym Int 2005 54(11):1543–1548

  23. K de la Caba, M Larrañaga, A Eceiza, MA Corcuera and I Mondragon. Kinetics and morphology of an epoxy resin modified with PEO-PPO-PEO block copolymers. Macromol Symp 2006 239(1):30–35

  24. Larrañaga M, Serrano E, Martin MD, Tercjak A, Kortaberria G, de la Caba K, Riccardi CC, Mondragon I (2007) Mechanical properties–morphology relationships in nano−/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polym Int 56(11):1392–1403

    Article  Google Scholar 

  25. Liu J, Sue H-J, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2009) Strain rate effect on toughening of nano-sized PEP–PEO block copolymer modified epoxy. Acta Mater 57(9):2691–2701

    Article  CAS  Google Scholar 

  26. Serrano E, Kortaberria G, Arruti P, Tercjak A, Mondragon I (2009) Molecular dynamics of an epoxy resin modified with an epoxidized poly(styrene–butadiene) linear block copolymer during cure and microphase separation processes. Eur Polym J 45(4):1046–1057

    Article  CAS  Google Scholar 

  27. MT Bashar, U Sundararaj and P Mertiny. Morphology and mechanical properties of nanostructured acrylic tri-block-copolymer modified epoxy. Polymer Engineering & Science 2013:n/a-n/a

  28. Kim J-W, Kim J-Y, Suh K-D (1997) Preparation and physical properties of rubber-modified epoxy resin using poly(urethane acrylate)/poly(glycidyl methacrylate-co-acrylonitrile) core-shell composite particles. J Appl Polym Sci 63(12):1589–1600

    Article  CAS  Google Scholar 

  29. Naguib M, Grassini S, Sangermano M (2013) Core/shell PBA/PMMA-PGMA nanoparticles to enhance the impact resistance of UV-cured epoxy systems. Macromol Mater Eng 298(1):106–112

    Article  CAS  Google Scholar 

  30. Sato E, Uehara I, Horibe H, Matsumoto A (2014) One-step synthesis of thermally curable hyperbranched polymers by addition–fragmentation chain transfer using divinyl monomers. Macromolecules 47(3):937–943

    Article  CAS  Google Scholar 

  31. Oh JH, Jang J, Lee S-H (2001) Curing behavior of tetrafunctional epoxy resin/hyperbranched polymer system. Polymer 42(20):8339–8347

    Article  CAS  Google Scholar 

  32. Ratna D, Simon GP (2001) Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin. Polymer 42(21):8833–8839

    Article  CAS  Google Scholar 

  33. Ratna D, Becker O, Krishnamurthy R, Simon GP, Varley RJ (2003) Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer 44(24):7449–7457

    Article  CAS  Google Scholar 

  34. Foix D, Serra A, Amparore L, Sangermano M (2012) Impact resistance enhancement by adding epoxy ended hyperbranched polyester to DGEBA photocured thermosets. Polymer 53(15):3084–3088

    Article  CAS  Google Scholar 

  35. Tomuta A, Ferrando F, Serra À, Ramis X (2012) New aromatic–aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets. React Funct Polym 72(9):556–563

    Article  CAS  Google Scholar 

  36. Li S, Cui C, Hou H (2015) Synthesis and characterization of amino-terminated hyperbranched polymer and as modifier for epoxy resin thermosets. Colloid Polym Sci 293(9):2681–2688

    Article  CAS  Google Scholar 

  37. Li S, Cui C, Hou H (2015) Synthesis of core-shell particles based on hyperbranced polyester and zirconium slag nanoparticles and Its influence on the impact resistance of epoxy resin thermosets. Polym Compos. doi:10.1002/pc.23602

    Google Scholar 

  38. Li S, Cui C, Hou H, Wu Q, Zhang S (2015) The effect of hyperbranched polyester and zirconium slag nanoparticles on the impact resistance of epoxy resin thermosets. Compos Part B 79:342–350

    Article  CAS  Google Scholar 

  39. Hawker CJ, Lee R, Frechet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113(12):4583–4588

    Article  CAS  Google Scholar 

  40. Jena KK, Raju KVSN, Prathab B, Aminabhavi TM (2007) Hyperbranched polyesters: synthesis, characterization, and molecular simulations. J Phys Chem B 111(30):8801–8811

    Article  CAS  Google Scholar 

  41. Allauddin S, Akhil Chandran MK, Jena KK, Narayan R, Raju KVSN (2013) Synthesis and characterization of APTMS/melamine cured hyperbranched polyester-epoxy hybrid coatings. Progress in Organic Coatings 76(10):1402–1412

    Article  CAS  Google Scholar 

  42. Barua S, Dutta G, Karak N (2013) Glycerol based tough hyperbranched epoxy: synthesis, statistical optimization and property evaluation. Chem Eng Sci 95(0):138–147

    Article  CAS  Google Scholar 

  43. Lv J, Meng Y, He L, Qiu T, Li X, Wang H (2013) Novel epoxidized hyperbranched poly(phenylene oxide): synthesis and application as a modifier for diglycidyl ether of bisphenol A. J Appl Polym Sci 128(1):907–914

    Article  CAS  Google Scholar 

  44. Chen S, Feng J (2014) Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: mechanical and thermal properties. Compos Sci Technol 101:145–151

    Article  CAS  Google Scholar 

  45. Buonocore GG, Schiavo L (2013) I Attianese and A Borriello. Hyperbranched polymers as modifiers of epoxy adhesives. Compos Part B 53(0):187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (grant number 51202211, 51402251, 51578289, and 51502259), the National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2012ZX04010032), the Natural science fund of Jiangsu Province (grant number BK20130428), the joint research fund between Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (grant number GX2015107), a project funded by the Flagship Major Development of Jiangsu Higher Education Institutions (grant number PPZY2015A025), and the Research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (grant number AE201111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhu, H., Lv, T. et al. The effect of amino-terminated hyperbranched polymers on the impact resistance of epoxy resins. Colloid Polym Sci 294, 607–615 (2016). https://doi.org/10.1007/s00396-015-3811-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3811-5

Keywords

Navigation