Skip to main content
Log in

Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Core/shell titanium dioxide (TiO2) nanoparticle/poly(methyl methacrylate-butyl acrylate-methacrylic acid) [P(MMA-BA-MAA)] nanocomposite colloidal microspheres have been successfully synthesized via in situ emulsion polymerization. TiO2 nanoparticles were firstly modified by silane coupling agent, vinyl triethoxysilane (A-151), to increase the dispersibility of TiO2 nanoparticles into the polyacrylate matrix. The A-151-modified TiO2 nanoparticles were characterized by Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques. The synthesized nanocomposite colloidal microspheres were characterized by TEM, scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and differential scanning calorimetry analysis (DSC). The results showed that A-151 coupling molecules was chemically bonded on the TiO2 nanoparticles surface, and the amount of coated A-151 was 3.0 wt%. According to TEM micrographs and DLS results, the dispersibility of modified TiO2 nanoparticles was obviously improved. TEM analysis revealed that an obvious core/shell structure morphology was observed with the core TiO2 particles surrounded by a uniform 10∼15-nm thick polymer shell. SEM–EDS result showed that TiO2 nanoparticles were homogenously monodispersed in the polymer matrix. DSC measurements indicated a glass transition temperature (T g) enhancement of P(MMA-BA-MAA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Inkyo M, Tokunaga Y, Tahara T, Iwaki T, Iskandar F, Hogan CJ, Okuyama K (2008) Ind Eng Chem Res 47(8):2597–2604

    Article  CAS  Google Scholar 

  2. Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Chem Mater 22(5):1749–1759

    Article  CAS  Google Scholar 

  3. Shtein M, Nadiv R, Lachman N, Daniel Wagner H, Regev O (2013) Compos Sci Technol 87(0):157–163

    Article  CAS  Google Scholar 

  4. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Colloid Polym Sci 292(9):2025–2052

    Article  CAS  Google Scholar 

  5. Akgün E, Hubbuch J, Wörner M (2014) Colloid Polym Sci 292(5):1241–1247

    Article  Google Scholar 

  6. Abdolbaghi S, Pourmahdian S, Saadat Y (2014) Colloid Polym Sci 292(5):1091–1097

    Article  CAS  Google Scholar 

  7. Ma CCM, Chen YJ, Kuan HC (2006) J Appl Polym Sci 100(1):508–515

    Article  CAS  Google Scholar 

  8. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Prog Polym Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  9. Bourgeat-Lami E, Lansalot M (2010) Organic/inorganic composite latexes: the marriage of emulsion polymerization and inorganic chemistry. In: Landfester K (ed) Hybrid latex particles. Springer, Heidelberg, pp. 53–123

    Chapter  Google Scholar 

  10. Qiao XG, Chen M, Zhou J, Wu LM (2007) J Polym Sci Pol Chem 45(6):1028–1037

    Article  CAS  Google Scholar 

  11. Zhou J, Chen M, Qiao X, Wu L (2006) Langmuir 22(24):10175–10179

    Article  CAS  Google Scholar 

  12. Chen M, Zhou SX, You B, Wu LM (2005) Macromolecules 38(15):6411–6417

    Article  CAS  Google Scholar 

  13. Chen M, Wu LM, Zhou SX, You B (2004) Macromolecules 37(25):9613–9619

    Article  CAS  Google Scholar 

  14. Ren Y, Chen M, Zhang Y, Wu L (2010) Langmuir 26(13):11391–11396

    Article  CAS  Google Scholar 

  15. Džunuzović E, Marinović-Cincović M, Vuković J, Jeremić K, Nedeljković J (2009) Polym Compos 30(6):737–742

    Article  Google Scholar 

  16. Zhang Y, Wu YF, Chen M, Wu LM (2010) Colloid Surface A 353(2–3):216–225

    Article  CAS  Google Scholar 

  17. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38(24):4441–4450

    Article  CAS  Google Scholar 

  18. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Macromol Symp 155(1):181–198

    Article  CAS  Google Scholar 

  19. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38(24):4419–4430

    Article  CAS  Google Scholar 

  20. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38(24):4431–4440

    Article  CAS  Google Scholar 

  21. Wang WP, Cao HM, Zhu GJ, Wang P (2010) J Polym Sci Part A: Polym Chem 48(8):1782–1790

    Article  CAS  Google Scholar 

  22. Yu DG, An JH, Bae JY, Lee YE, Ahn SD, Kang SY, Suh KS (2004) J Appl Polym Sci 92(5):2970–2975

    Article  CAS  Google Scholar 

  23. Yang MJ, Dan Y (2005) Colloid Polym Sci 284(3):243–250

    Article  CAS  Google Scholar 

  24. Yu DG, An JH, Bae JY, Ahn SD, Kang SY, Suh KS (2005) J Appl Polym Sci 97(1):72–79

    Article  CAS  Google Scholar 

  25. Yang MJ, Dan Y (2006) J Appl Polym Sci 101(6):4056–4063

    Article  CAS  Google Scholar 

  26. Pazokifard S, Mirabedini SM, Esfandeh M, Mohseni M, Ranjbar Z (2012) Surf Interface Anal 44(1):41–47

    Article  CAS  Google Scholar 

  27. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) Langmuir 17(9):2664–2669

    Article  CAS  Google Scholar 

  28. Li XW, Song RG, Jiang Y, Wang C, Jiang D (2013) Appl Surf Sci 276:761–768

    Article  CAS  Google Scholar 

  29. Widegren J, Bergstrom L (2002) J Am Ceram Soc 85(3):523–528

    Article  CAS  Google Scholar 

  30. Fazio S, Guzman J, Colomer M, Salomoni A, Moreno R (2008) J Eur Ceram Soc 28(11):2171–2176

    Article  CAS  Google Scholar 

  31. Ugelstad J, Hansen F (1976) Rubber Chem Technol 49(3):536–609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 50803017) and the Fundamental Research Funds for the Central Universities, SCUT (No. 2013zm0070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delong Xie or Xinya Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, X., Xie, D., Wang, C. et al. Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres. Colloid Polym Sci 294, 463–469 (2016). https://doi.org/10.1007/s00396-015-3807-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3807-1

Keywords

Navigation