Skip to main content
Log in

On the nature of enhanced segmental mobility at entangled amorphous polymers interfaces

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The long-range segmental mobility at symmetric polymer–polymer interfaces and in the polymer bulk has been compared by employing the adhesion approach and differential scanning calorimetry, respectively, by the example of the nascent and vacuum-dried powders of an entangled random-coiled ultra-high-molecular-weight polystyrene (UHMWPS) with a molecular weight of 106 g/mol. It has been shown that the depression in the surface glass transition temperature of UHMWPS with respect to its bulk glass transition temperature cannot be explained by plasticisation of a near-surface nanometre-thick layer via the surface segregation of the solvent and/or monomer residues. Driving forces of the enhanced long-range segmental mobility in ultrathin polymer layers have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Flory P (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  2. Boiko YM, Lyngaae-Jørgensen J (2004) Healing of interfaces of high- and ultra-high-molecular-weight polystyrene below the glass transition temperature of the bulk. Polymer 45:8541–8549. doi:10.1016/j.polymer.2004.10.021

    Article  CAS  Google Scholar 

  3. Van Krevelen DW, te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier Science, UK

    Google Scholar 

  4. De Gennes P-G (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579. doi:10.1063/1.1675789

    Article  Google Scholar 

  5. Haward RN, Young RJ (1997) The physics of glassy polymers, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  6. Berstein VA, Egorov VM (1993) Differential scanning calorimetry of polymers. Ellis Horwood, Chichester

    Google Scholar 

  7. Boiko YM (2010) New simple method of measuring the surface glass transition temperature of polymers. J Polym Sci B Polym Phys 48:2012–2021. doi:10.1002/polb.22081

    Article  CAS  Google Scholar 

  8. Voyutskii SS (1963) Autoadhesion and adhesion of high polymers. Interscience, New York

    Google Scholar 

  9. Boiko YM (2010) Surface glass transition of amorphous miscible polymers blends. Colloid Polym Sci 288:1757–1761. doi:10.1007/s00396-010-2315-6

    Article  CAS  Google Scholar 

  10. Boiko YM (2011) Interdiffusion of polymers with glassy bulk. Colloid Polym Sci 289:1847–1854. doi:10.1007/s00396-011-2508-7

    Article  CAS  Google Scholar 

  11. Forrest AJ, Dalnoki-Veress K (2001) The glass transition in thin polymer films. Adv Colloid Interf Sci 94:167–196. doi:10.1016/S0001-8686(01)00060-4

    Article  CAS  Google Scholar 

  12. Reiter G (1993) Mobility of polymers in films thinner than their unperturbed size. Europhys Lett 23:579–584. doi:10.1209/0295-5075/23/8/007

    Article  CAS  Google Scholar 

  13. Glor EC, Composto RJ, Fakhraai Z (2015) Glass transition dynamics and fragility of ultrathin polymer blend films. Macromolecules 48:6682–6689. doi:10.1021/acs.macromol.5b00979

    Article  CAS  Google Scholar 

  14. Wool RP (1995) Polymer interfaces: structure and strength. Hanser Press, Munich

    Google Scholar 

  15. Boiko YM, Bach A, Lyngaae-Jørgensen J (2004) Self-bonding in an amorphous polymer below the glass transition: a T-peel test investigation. J Polym Sci B Polym Phys 42:1861–1867. doi:10.1002/polb.20077

    Article  CAS  Google Scholar 

  16. Greiner R, Schwarzl FR (1989) Volume relaxation and physical aging of amorphous polymers. I. Theory of volume relaxation after single temperature jumps. Colloid Polym Sci 267:39–47. doi:10.1007/s00419-014-0943-x

    Article  CAS  Google Scholar 

  17. Schwarzl FR, Zahradnik F (1980) The time-temperature position of the glass-rubber transition of amorphous polymers and the free volume. Rheol Acta 19:137–152. doi:10.1007/BF01521925

    Article  CAS  Google Scholar 

  18. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707. doi:10.1021/ja01619a008

    Article  CAS  Google Scholar 

  19. Prager S, Tirrell M (1981) The healing process at polymer–polymer interfaces. J Chem Phys 75:5194–5198. doi:10.1063/1.441871

    Article  CAS  Google Scholar 

  20. Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210. doi:10.1007/BF00552073

    Article  CAS  Google Scholar 

  21. Gao S, Koh YP, Simon SL (2013) Calorimetric glass transition of single polystyrene ultrathin films. Macromolecules 46:562–570. doi:10.1021/ma3020036

    Article  CAS  Google Scholar 

  22. Boiko YM (2014) On the continuity of the diffusion behaviour at amorphous polymer-polymer interfaces on both sides of the bulk glass transition temperature. Colloid Polym Sci 292:1719–1723. doi:10.1007/s00396-014-3238-4

    Article  CAS  Google Scholar 

  23. Zhang X, Tasaka S, Inagaki N (2000) Surface mechanical properties of low-molecular-weight polystyrene below its glass-transition temperatures. J Polym Sci B Polym Phys 38:654–658. doi:10.1002/(SICI)1099-0488(20000301)

    Article  CAS  Google Scholar 

  24. Aharoni SM (1983) On entanglements of flexible and rodlike polymers. Macromolecules 16:1722–1728. doi:10.1021/ma00245a008

    Article  CAS  Google Scholar 

  25. Akabori K, Tanaka K, Kajiyama T, Takahara A (2003) Anomalous surface relaxation process in polystyrene ultrathin film. Macromolecules 36:4937–4943. doi:10.1021/ma034001y

    Article  CAS  Google Scholar 

  26. Milner ST, Lipson JEG (2010) Delayed classification model for free-surface suppression of T g in polymer glasses. Macromolecules 43:9865–9873. doi:10.1021/ma101098d

    Article  CAS  Google Scholar 

  27. Boiko YM, Lyngaae-Jørgensen J (2004) Bonding at compatible and incompatible amorphous interfaces of polystyrene and poly(methyl methacrylate) below the glass transition temperature. J Marcomol Sci Phys 43:695–709. doi:10.1081/MB-120030015

    Article  Google Scholar 

  28. Boiko YM, Prud’homme RE (1999) Mechanical properties developing at the interface of amorphous miscible polymers, below the glass transition temperature: time-temperature superposition. J Appl Polym Sci 74:825–830. doi:10.1002/(SICI)1097-4628(19991024)

    Article  CAS  Google Scholar 

  29. Balzer BN, Gallei M, Sondergeld K, Schindler M, Müller-Buschbaum P, Rehahn M, Hugel T (2013) Cohesion mechanisms of polystyrene-based thin polymer films. Macromolecules 46:7406–7414. doi:10.1021/ma401173y

    Article  CAS  Google Scholar 

  30. Kim S, Torkelson JM (2011) Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: a test of de Gennes’ sliding motion mechanism. Macromolecules 44:4546–4553. doi:10.1021/ma200617j

    Article  CAS  Google Scholar 

  31. Nguyen HK, Labardi M, Lucchesi M, Rolla P, Prevosto D (2013) Plasticization in ultrathin polymer films: the role of supporting substrate and annealing. Macromolecules 46:555–561. doi:10.1021/ma301980w

    Article  CAS  Google Scholar 

  32. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109, 055701. doi:10.1103/PhysRevLett.109.055701 (1–5)

    Article  Google Scholar 

  33. Kawana S, Jones RAL (2001) Character of the glass transition in thin supported polymer films. Phys Rev E 63, 021501. doi:10.1103/PhysRevE.63.021501 (1–6)

    Article  CAS  Google Scholar 

  34. Sharp JS, Forrest JF (2003) Free surface cause reduction in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91, 235701. doi:10.1103/PhysRevE.91.235701 (1–4)

    Article  CAS  Google Scholar 

  35. Silberberg A (1982) Distribution of conformations and chain ends near the surface of a melt of linear flexible macromolecules. J Colloid Interface Sci 90:86–91. doi:10.1016/0021-9797(82)90400-3

    Article  CAS  Google Scholar 

  36. Boiko YM, Prud’homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30:3708–3710. doi:10.1021/ma960002x

    Article  CAS  Google Scholar 

  37. Mansfield KF, Theodorou DN (1991) Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24:6283–6294. doi:10.1021/ma00023a034

    Article  CAS  Google Scholar 

  38. Brown HR, Russell TP (1996) Entanglements at polymer surfaces and interfaces. Macromolecules 29:798–800. doi:10.1021/ma951123k

    Article  CAS  Google Scholar 

  39. De Gennes PG (2000) Glass transition in thin polymer films. Eur Phys J E Soft Matter 2:201–205. doi:10.1007/PL00013665

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research (Project 13-03-00634/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Boiko.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, Y.M., Myasnikova, L.P. On the nature of enhanced segmental mobility at entangled amorphous polymers interfaces. Colloid Polym Sci 294, 471–478 (2016). https://doi.org/10.1007/s00396-015-3806-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3806-2

Keywords

Navigation