Skip to main content
Log in

Response surface optimization of miniemulsion: application to UV synthesis of hexyl acrylate nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper presents the UV synthesis in miniemulsion of nanoparticles from hexyl acrylate monomers using radical photoinitiator type I benzoin methyl ether. The optimization of such a miniemulsion composition is studied to produce monodisperse nanoparticles with a mean size d p inferior to 200 nm after photopolymerization of the droplets. The correlation between the size distributions of the droplets and the corresponding nanoparticles was verified. Therefore, a composite design was built as regards to the amount of the surfactant (sodium dodecyl sulfate), the co-stabilizer (pentadecane), and the monomer (hexyl acrylate) in order to model the mean size and the polydispersity of the miniemulsion droplets. A range of monodisperse droplets size between 150 and 175 nm was achieved. After UV irradiation, high monomer conversion yield (>90 %) was reached leading to nanoparticles with mean size ranging from 100 to 165 nm. These hexyl acrylate nanoparticles have been obtained after 10 min of irradiation, offering new opportunities for nanoparticles synthesis in enclosed and/or plastic vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPS:

2-Acrylamide-2-methyl propane sulfonic acid

BME:

Benzoin methyl ether

d d :

Droplet diameter

HA:

Hexyl acrylate

d p :

Nanoparticle diameter

PdIDLS :

Polydispersity index

C15 :

Pentadecane

SDS:

Sodium dodecyl sulfate

References

  1. Claus B et al (2010) Micro- and Nanopatterning of Surfaces Employing Self Assembly of Nanoparticles and Its Application in Biotechnology and Biomedical Engineering. Lithography, Book edited by: Mickael Wang. ISBN: 978-953-307-064-3

  2. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27(7):1283–1346

    Article  CAS  Google Scholar 

  3. Larpent C, Tadros TF (1991) Preparation of microlatex dispersions using oil-in-water microemulsions. Colloid Polym Sci 269(11):1171–1183

    Article  CAS  Google Scholar 

  4. Capek I (2001) On the role of oil-soluble initiators in the radical polymerization of micellar systems. Adv Colloid Interf Sci 91(2):295–334

    Article  CAS  Google Scholar 

  5. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27(4):689–757

    Article  CAS  Google Scholar 

  6. Li T et al (2011) Study of emulsion polymerization stabilized by amphiphilic polymer nanoparticles. Colloid Polym Sci 289(14):1543–1551

    Article  CAS  Google Scholar 

  7. Qi D, Cao Z, Ziener U (2014) Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Adv Colloid Interf Sci 211:47–62

    Article  CAS  Google Scholar 

  8. Kundu P et al (2013) Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolytes and temperature. Chem Eng Sci 102:176–185

    Article  CAS  Google Scholar 

  9. Jahanzad F et al (2007) Hybrid polymer particles by miniemulsion polymerisation. Colloids Surf A Physicochem Eng Asp 302(1–3):424–429

    Article  CAS  Google Scholar 

  10. Babaç C et al (2004) Production of nanoparticles of methyl methacrylate and butyl methacrylate copolymers by microemulsion polymerization in the presence of maleic acid terminated poly(N-acetylethylenimine) macromonomers as cosurfactant. Eur Polym J 40(8):1947–1952

    Article  Google Scholar 

  11. Anton N, Vandamme T (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28(5):978–985

    Article  CAS  Google Scholar 

  12. Schork FJ et al (2005) Miniemulsion polymerization. Adv Polym Sci 175:129–255

    Article  CAS  Google Scholar 

  13. Fontenot K, Schork FJ (1993) Batch polymerization of methyl methacrylate in mini/macroemulsions. J Appl Polym Sci 49(4):633–655

    Article  CAS  Google Scholar 

  14. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angewante Chemie-International Edition, 48(25): p.4488-4507

  15. Landfester K et al (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 32(16):5222–5228

    Article  CAS  Google Scholar 

  16. Landfester K (2000) Recent developments in miniemulsions—formation and stability mechanisms. Macromol Symp 150(1):171–178

    Article  CAS  Google Scholar 

  17. Hecht L et al (2011) Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir 27:2279–2285

    Article  CAS  Google Scholar 

  18. Xu X et al (1999) Microemulsion polymerization of methyl methacrylate initiated with BPO. Eur Polym J 35(11):1975–1978

    Article  CAS  Google Scholar 

  19. Chen J, Zhang Z (2007) Radiation-induced polymerization of methyl methacrylate in microemulsion with high monomer content. Eur Polym J 43(4):1188–1194

    Article  CAS  Google Scholar 

  20. Capek I (2000) Photopolymerization of alkyl(meth)acrylates and polyoxyethylene macromonomers in fine emulsions. Eur Polym J 36(2):255–263

    Article  CAS  Google Scholar 

  21. Capek I, Fouassier JP (1997) Kinetics of photopolymerization of butyl acrylate in direct micelles. Eur Polym J 33(2):173–181

    Article  CAS  Google Scholar 

  22. Peinado C et al (2006) Photoinitiated polymerization in bicontinuous microemulsions: fluorescence monitoring. J Polym Sci A Polym Chem 44(18):5291–5303

    Article  CAS  Google Scholar 

  23. David G et al (2002) Microemulsion photopolymerization of methacrylates stabilized with sodium dodecyl sulfate and poly(N-acetylethylenimine) macromonomers. Eur Polym J 38(1):73–78

    Article  CAS  Google Scholar 

  24. Dou J et al (2010) Magnetic nanoparticles encapsulated latexes prepared with photo-initiated miniemulsion polymerization. Colloid Polym Sci 288(18):1751–1756

    Article  CAS  Google Scholar 

  25. Roose P et al (2014) UV-nanoparticles: photopolymerized polymer colloids from aqueous dispersions of acrylated oligomers. Prog Org Coat 77(10):1569–1576

    Article  CAS  Google Scholar 

  26. Chemtob A et al (2010) Photoinduced miniemulsion polymerization. Colloid Polym Sci 288(5):579–587

    Article  CAS  Google Scholar 

  27. Hoijemberg PA, Chemtob A, Croutxé-Barghorn C (2011) Two routes towards photoinitiator-free photopolymerization in miniemulsion: acrylate self-initiation and photoactive surfactant. Macromol Chem Phys 212(22):2417–2422

    Article  CAS  Google Scholar 

  28. Wang Y, Yang W (2004) MMA/DVB emulsion surface graft polymerization initiated by UV light. Langmuir 20(15):6225–6231

    Article  CAS  Google Scholar 

  29. Wang Y et al (2005) Directly fabricating monolayer nanoparticles on a polymer surface by UV-induced MMA/DVB microemulsion graft polymerizationmacromolecular rapid communications 26(2). Macromol Rapid Commun 26(2):87–92

    Article  CAS  Google Scholar 

  30. Ladner Y et al (2012) New "one-step" method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels. Lab Chip 12(9):1680–1685

    Article  CAS  Google Scholar 

  31. Ladner Y, Crétier G, Faure K (2012) Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology. Electrophoresis 33(19-20):3087–3094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by French National Research Agency (ANR) through Nanochrom project (11-JS09-017-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Faure.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data S1

(DOC 61 kb)

Supplementary data S2

(DOC 28 kb)

Supplementary data S3

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadé, J., Bordes, C., Raffin, G. et al. Response surface optimization of miniemulsion: application to UV synthesis of hexyl acrylate nanoparticles. Colloid Polym Sci 294, 27–36 (2016). https://doi.org/10.1007/s00396-015-3778-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3778-2

Keywords

Navigation