Skip to main content
Log in

Synthesis and aggregation behaviors of tail-branched surfactant Guerbet-cetyl trimethyl ammonium chloride

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel cationic surfactant Guerbet-cetyl trimethyl ammonium chloride (G-CTAC) was synthesized by combining several traditional synthetic processes in laboratory. The molecular structure of G-CTAC was characterized by Fourier transform infrared (FT-IR) spectra and proton nuclear magnetic resonance (1HNMR). This new amphiphile exhibited excellent performances in aqueous solution, which was investigated by surface tension measurement, contact angle on parafilm, particle size of aggregates, transmission electron microscopy (TEM), emulsifying experiments, and antistatic tests. It was found that the new quaternary ammonium compound could effectively decrease the surface tension of aqueous solution to 26.2 mN m−1 with the critical micelle concentration (CMC) being 5.9 mmol L−1. In addition, the cationic surfactant synthesized could efficiently decrease the contact angle of aqueous solution on paraffin surface. We suppose that these unique properties are attributed to the presence of the branching Guerbet-cetyl being hydrophobic group in the molecule. Moreover, according to TEM observations, this quaternary ammonium compound was inclined to aggregate into vesicles spontaneously without induction of any other additives in aqueous solution. Antistatic tests and emulsifying experiments were also conducted to explore the potential applications of this new material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Lenick AJ Jr (2001) Guerbet chemistry. Journal of Surfactants and Detergents 4(3):311–315. doi:10.1007/s11743-001-0185-1

    Article  Google Scholar 

  2. Carlini C, Di Girolamo M, Macinai A et al (2003) Selective synthesis of isobutanol by means of the Guerbet reaction: Part 2. Reaction of methanol/ethanol and methanol/ethanol/n-propanol mixtures over copper based/MeONa catalytic systems. Journal of Molecular Catalysis A: Chemical 200(1):137–146. doi:10.1016/S1381-1169(03)00042-6

    Article  CAS  Google Scholar 

  3. Carlini C, Marchionna M, Noviello M et al (2005) Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg–Al mixed oxides partially substituted by different metal components. Journal of Molecular Catalysis A: Chemical 232(1):13–20. doi:10.1016/j.molcata.2004.12.037

    Article  CAS  Google Scholar 

  4. Matsu-Ura T, Sakaguchi S, Obora Y et al (2006) Guerbet reaction of primary alcohols leading to β-alkylated dimer alcohols catalyzed by iridium complexes. The Journal of organic chemistry 71(21):8306–8308. doi:10.1021/jo061400t

    Article  CAS  Google Scholar 

  5. Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the guerbet coupling of alcohols. ACS Catalysis 3(7):1588–1600. doi:10.1021/cs400292f

    Article  CAS  Google Scholar 

  6. Kenar JA, Knothe G, Copes AL (2004) Synthesis and characterization of dialkyl carbonates prepared from mid-, long-chain, and guerbet alcohols. Journal of the American Oil Chemists’ Society 81(3):285–291. doi:10.1007/s11746-004-0897-4

    Article  CAS  Google Scholar 

  7. Knothe G, Carlson KD (1998) Synthesis, mass spectrometry, and nuclear magnetic resonance characterization of di-Guerbet esters. Journal of the American Oil Chemists’ Society 75(12):1861–1866. doi:10.1007/s11746-998-0342-y

    Article  CAS  Google Scholar 

  8. Huang C, Li Q, Li M et al (2014) Synthesis and properties of Guerbet hexadecyl sulfate. Tenside Surfactants Detergents 51(6):506–510. doi:10.3139/113.110335

    Article  CAS  Google Scholar 

  9. Varadaraj R, Bock J, Valint P Jr et al (1991) Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 1. Surface and instantaneous interfacial tensions. The Journal of Physical Chemistry 95(4):1671–1676. doi:10.1021/j100157a033

    Article  CAS  Google Scholar 

  10. Varadaraj R, Bock J, Valint P Jr et al (1991) Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 2. Dynamic surface tension. The Journal of Physical Chemistry 95(4):1677–1679. doi:10.1021/j100157a034

    Article  CAS  Google Scholar 

  11. Varadaraj R, Bock J, Valint P Jr et al (1991) Fundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from Guerbet alcohols. 3. Dynamic contact angle and adhesion tension. The Journal of Physical Chemistry 95(4):1679–1681. doi:10.1021/j100157a035

    Article  CAS  Google Scholar 

  12. Qiao W, Cui Y, Zhu Y et al (2012) Synthesis and surface activity of Guerbet betaine surfactants with ethylene oxide groups. Tenside Surfactants Detergents 49(3):252–255. doi:10.3139/113.110190

    Article  CAS  Google Scholar 

  13. Katarzyna D, Krystyna P (2008) The effect of molecular structure on the surface properties of selected quaternary ammonium salts. Journal of colloid and interface science 321(1):220–226. doi:10.1016/j.jcis.2008.01.049

    Article  Google Scholar 

  14. Kimura H (2011) Progress in one-step amination of long-chain fatty alcohols with dimethylamine-development of key technologies for industrial applications, innovations, and future outlook. Catalysis Reviews: Science and Engineering 53(1):1–90. doi:10.1080/01614940.2011.556913

    Article  CAS  Google Scholar 

  15. Dong S, Li Y, Li Q (2013) Study on one-step catalytic amination of oleyl alcohol to unsaturated tertiary amine. Research on Chemical Intermediates 39(3):869–874. doi:10.1007/s11164-012-0600-3

    Article  CAS  Google Scholar 

  16. Li Y, Li Q, Zhi L et al (2011) Catalytic amination of octanol for synthesis of trioctylamine and catalyst characterization. Catalysis letters 141(11):1635–1642. doi:10.1007/s10562-011-0686-z

    Article  CAS  Google Scholar 

  17. Lee CH, Yang YM, Chang CH (2014) Enhancing physical stability of positively charged catanionic vesicles in the presence of calciumchloride via cholesterol-induced fluidic bilayer characteristic. Colloid Polym Sci 292:2519–2527. doi:10.1007/s00396-014-3285-x

    Article  CAS  Google Scholar 

  18. Lee C H, Yang Y M, Leu K M, et al. (2015) Exploring physical stability characteristics of positively charged catanionic vesicle/DNA complexes. Colloid Polym Sci. DOI: 10.1007/s00396-015-3608-6.

  19. Rosen M J, Kunjappu J T (2012) characteristic features of surfactants. In: Surfactants and interfacial phenomena, 3rd edn. John Wiley & Sons, pp1-33.

  20. Kunieda H, Shinoda K (1978) Solution behavior of dialkyldimethylammonium chloride in water. Basic properties of antistatic fabric softeners. The Journal of Physical Chemistry 82(15):1710–1714. doi:10.1021/j100504a010

    Article  CAS  Google Scholar 

  21. XU Z, ZHOU C, JIN Z et al (2009) Study of synthesis and surface active properties of novel Guerbet surfactants. Fine Chemicals 3:009

    Google Scholar 

  22. Jung HT, Coldren B, Zasadzinski JA et al (2001) The origins of stability of spontaneous vesicles. Proceedings of the National Academy of Sciences 98(4):1353–1357

    Article  CAS  Google Scholar 

  23. Alexander S, Smith GN, James C et al (2014) Low-surface energy surfactants with branched hydrocarbon architectures. Langmuir 30:3413

    Article  CAS  Google Scholar 

  24. Guo X, Li H, Zhang F, Zheng S, Guo R (2008) Aggregation of single-chained cationic surfactant molecules into vesicles induced by oligonucleotide. Journal of colloid and interface science 324:185–191. doi:10.1016/j.jcis.2008.04.057

    Article  CAS  Google Scholar 

  25. Bramer T, Dew N, Edsman K (2007) Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 59(10):1319–1334. doi:10.1211/jpp.59.10.0001

    Article  CAS  Google Scholar 

  26. Rosa M, Miguel M, Lindman B (2007) DNA encapsulation by biocompatible catanionic vesicles. J Colloid Interface Sci 312:87–97. doi:10.1016/j.jcis.2006.07.084

    Article  CAS  Google Scholar 

  27. Wu C-J, Kuo A-T, Lee C-H, Yang Y-M, Chang C-H (2013) Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant. Colloid Polym Sci 292:589–597. doi:10.1007/s00396-013-3104-9

    Article  Google Scholar 

  28. Lundberg D, Berezhnoy NV, Lu C, Korolev N, Su C-J, Alfredsson V, Miguel MG, Lindman B, Nordenskiold L (2010) Interactions between cationic lipid bilayers and model chromatin. Langmuir 26:12488–12492. doi:10.1021/la1014658

    Article  CAS  Google Scholar 

  29. Sommer HZ, Lipp HI, Jackson LL (1971) Alkylation of amines. General exhaustive alkylation method for the synthesis of quaternary ammonium compounds. The Journal of Organic Chemistry 36(6):824–828. doi:10.1021/jo00805a021

    Article  CAS  Google Scholar 

  30. Li M, Li Q X, Hou S Z, Zhang M H and Li Y L: CN103272608A

  31. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochimica Acta 428(1):147–155. doi:10.1016/j.tca.2004.11.009

    Article  CAS  Google Scholar 

  32. Lee EM, Thomas RK, Penfold J et al (1989) Structure of aqueous decyltrimethylammonium bromide solutions at the air water interface studied by the specular reflection of neutrons. The Journal of Physical Chemistry 93(1):381–388. doi:10.1021/j100338a073

    Article  CAS  Google Scholar 

  33. Rosen M J, Kunjappu J T (2012) Adsorption of surface-active agents at interfaces-the electrical double layer. In: Surfactants and interfacial phenomena, 3rd edn. John Wiley & Sons, pp35-103

  34. Dahanayake M, Cohen AW, Rosen MJ (1986) Relationship of structure to properties of surfactants. 13. Surface and thermodynamic properties of some oxyethylenated sulfates and sulfonates. The Journal of Physical Chemistry 90(11):2413–2418. doi:10.1021/j100402a032

    Article  CAS  Google Scholar 

  35. Dutschk V, Sabbatovskiy KG, Stolz M et al (2003) Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces. Journal of colloid and interface science 267(2):456–462. doi:10.1016/S0021-9797(03)00723-9

    Article  CAS  Google Scholar 

  36. Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18(1):31–38. doi:10.1021/la010831y

    Article  CAS  Google Scholar 

  37. Wilk KA, Poźniak R, Sokoŀowski A (2000) Antistatic and wetting properties of chemodegradable cationic surfactants containing 1, 3-dioxolane moiety. Journal of Surfactants and Detergents 3(2):207–211. doi:10.1007/s11743-000-0127-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Science and Technology Support Project of China (No. 2014BAE03B03) and Shanxi Province Science Foundation for Youths (No. 2013021009–4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunling Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Song, Y. et al. Synthesis and aggregation behaviors of tail-branched surfactant Guerbet-cetyl trimethyl ammonium chloride. Colloid Polym Sci 294, 271–279 (2016). https://doi.org/10.1007/s00396-015-3771-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3771-9

Keywords

Navigation