Skip to main content

Nanostructures in clear and homogeneous mixtures of rapeseed oil and ethanol in the presence of green additives


Ethanol and rapeseed oil are mixed in the presence of tributyl citrate, 2,5-dimethylfuran, 2-methylfuran, 2-methyl tetrahydrofuran, methyl tert butyl ether, ethyl tert butyl ether, FAME-rapeseed biodiesel, 1-heptanol, and 2-ethylhexyl nitrate, at 25 °C (298.15 K). All these additives come or can be obtained completely or partially from plants. The obtained ternary phase diagrams show a large domain of clear and homogeneous solutions and a liquid two-phase system due to the partial solubility of rapeseed oil and ethanol. All the tested additives have thus an evident cosolvent behavior for ethanol and rapeseed oil. In all the studied systems, the possible presence of nanostructures is checked with dynamic light scattering (DLS) and confirmed using static light scattering (SLS). In the system rapeseed oil/ethanol/1-heptanol, the presence of nanostructures is definitely established performing small-angle neutron scattering (SANS). The true geometry of these nanostructures could not be detected, but systematic conductivity measurements starting with the binary melt 1-heptanol/rapeseed oil in the presence of LiClO4 adding ethanol show clearly a continuous transition from ethanol-in-rapeseed oil to rapeseed oil-in-ethanol mixtures passing through a bicontinuous medium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Cetane number




Dynamic light scattering


Ethyl tert butyl ether


2-Ethyl hexyl nitrate


Fatty acid methyl ester




2-Methyl tetrahydrofuran


Methyl tert butyl ether


Small-angle neutron scattering


Static light scattering


Tributyl citrate


  1. Arpornpong N, Attaphong C, Charoensaeng A, Sabatini DA, Khaodhiar S (2014) Ethanol-in-palm oil/diesel microemulsion-based biofuel: phase behavior, viscosity, and droplet size. Fuel 132:101

    Article  CAS  Google Scholar 

  2. Silva EJ, Zaniquelli MED, Loh W (2006) Light-scattering investigation on microemulsion formation in mixtures of diesel oil (or hydrocarbons) + ethanol + additives. Energy Fuel 21:222

    Article  Google Scholar 

  3. Dabelstein W, Reglitzky A, Schütze A, Reders K (2007) Automotive fuels, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  4. Chavarria-Hernandez JC, Pacheco-Catalán DE (2014) Predicting the kinematic viscosity of FAMEs and biodiesel: empirical models. Fuel 124:212

    Article  CAS  Google Scholar 

  5. Esteban B, Riba J-R, Baquero G, Rius A, Puig R (2012) Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42:164

    Article  CAS  Google Scholar 

  6. Misra RD, Murthy MS (2010) Straight vegetable oils usage in a compression ignition engine—a review. Renew Sust Energ Rev 14:3005

    Article  CAS  Google Scholar 

  7. Wallington TJ, Kaiser EW, Farrell JT (2006) Automotive fuels and internal combustion engines: a chemical perspective. Chem Soc Rev 35:335

    Article  CAS  Google Scholar 

  8. Ghosh P (2008) Predicting the effect of cetane improvers on diesel fuels. Energy Fuel 22:1073

    Article  CAS  Google Scholar 

  9. Al-Farayedhi AA, Al-Dawood AM, Gandhidasan P (2004) Experimental investigation of SI engine performance using oxygenated fuel. J Eng Gas Turbines Power 126(1):178

    Article  CAS  Google Scholar 

  10. Górski K, Sen AK, Lotko W, Swat M (2013) Effects of ethyl-tert-butyl ether (ETBE) addition on the physicochemical properties of diesel oil and particulate matter and smoke emissions from diesel engines. Fuel 103:1138

    Article  Google Scholar 

  11. Ingendoh A, Maerz U (2010) Citric acid esters as fuels and heating fuels. Patent no. DE102009015441 A1. Germany

  12. Jenkins RW, Munro M, Nash S, Chuck CJ (2013) Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel 103:593

    Article  CAS  Google Scholar 

  13. Huber G, Remmele E, Thuneke K, Emberger P (2013) Use of citric acid esters as alternative fuel for diesel engines. 21st European Biomass Conference and Exhibition, Copenhagen, Denmark

  14. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982

    Article  CAS  Google Scholar 

  15. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem 120:8042

    Article  Google Scholar 

  16. Wei L, Li Z, Tong L, Wang Z, Jin H, Yao M et al (2012) Primary combustion intermediates in lean and rich low-pressure premixed laminar 2-methylfuran/oxygen/argon flames. Energy Fuel 26:6651

    CAS  Google Scholar 

  17. Christensen E, Yanowitz J, Ratcliff M, McCormick RL (2011) Renewable oxygenate blending effects on gasoline properties. Energy Fuel 25:4723

    Article  CAS  Google Scholar 

  18. Bamgboye AI, Hansen AC (2008) Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int Agrophys 22:21

    CAS  Google Scholar 

  19. Klossek ML, Touraud D, Zemb T, Kunz W (2012) Structure and solubility in surfactant-free microemulsions. ChemPhysChem 13:4116

    Article  CAS  Google Scholar 

  20. Marcus J, Klossek ML, Touraud D, Kunz W (2013) Nano-droplet formation in fragrance tinctures. Flavour Fragrance J 28:294

    Article  CAS  Google Scholar 

  21. Schottl S, Marcus J, Diat O, Touraud D, Kunz W, Zemb T et al (2014) Emergence of surfactant-free micelles from ternary solutions. Chem Sci 5:2949

    Article  Google Scholar 

  22. Diat O, Klossek ML, Touraud D, Deme B, Grillo I, Kunz W et al (2013) Octanol-rich and water-rich domains in dynamic equilibrium in the pre-ouzo region of ternary systems containing a hydrotrope. J Appl Crystallogr 46:1665

    Article  CAS  Google Scholar 

  23. Clausse M, Nicolas-Morgantini L, Zrabda A, Touraud D (1987) Water / ionic surfactant / alkanol / hydrocarbon systems. Realms-of-existence and transport properties of microemulsion type media. Surfactant science series, microemulsion systems. Dekker, New York, p 15

    Google Scholar 

  24. Preu H, Schirmer C, Tomšič M, Bešter Rogač M, Jamnik A, Belloni L et al (2003) Light, neutron, X-ray scattering, and conductivity measurements on aqueous dodecyltrimethylammonium bromide/1-hexanol solutions. J Phys Chem B 107:13862

    Article  CAS  Google Scholar 

  25. Niebel Y, Buschmann MD, Lavertu M, De Crescenzo G (2014) Combined analysis of polycation/ODN polyplexes by analytical ultracentrifugation and dynamic light scattering reveals their size, refractive index increment, stoichiometry, porosity, and molecular weight. Biomacromolecules 15:940

    Article  CAS  Google Scholar 

  26. Einaga Y, Abe F, Yamakawa H (1992) Light scattering method of determining the second virial coefficient for simple molecules and oligomers. J Phys Chem 96:3948

    Article  CAS  Google Scholar 

  27. Markowitz MM, Hawley WN, Boryta DA, Harris RF (1961) Lithium salts as solutes in nonaqueous media: solubility trends of lithium perchlorate. J Chem Eng Data 6:325

    Article  CAS  Google Scholar 

  28. Corti M, Degiorgio V (1981) Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions. J Phys Chem 85:711

    Article  CAS  Google Scholar 

  29. Li Y, Fabiano-Tixier AS, Ruiz K, Rossignol Castera A, Bauduin P, Diat O et al (2015) Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis. Food Chem 173:873

    Article  CAS  Google Scholar 

  30. Clausse M, Peyrelasse J, Heil J, Boned C, Lagourette B (1981) Bicontinuous structure zones in microemulsions. Nature 293:636

    Article  CAS  Google Scholar 

  31. Clausse M, Zradba A, Nicolas-Morgantini L (1985) Water/ionic surfactant/alkanol/hydrocarbon systems. Realms-of-existence and transport properties of microemulsion type media. Colloid Polym Sci 263:767

    Article  CAS  Google Scholar 

  32. Bošković P, Sokol V, Zemb T, Touraud D, Kunz W (2015) Weak micelle-like aggregation in ternary liquid mixtures as revealed by conductivity, surface tension, and light scattering. J Phys Chem B 119:9933

    Article  Google Scholar 

Download references


A. Khoshsima is grateful for the financial support provided by the Ministry of Science, Research, and Technology of Islamic Republic of Iran (MSRT) and the German Academic Exchange Service (DAAD). SANS measurements were performed in the course of experiments following proposal 9-10-1395 at the Institut Laue-Langevin (Grenoble, France). We thank very sincerely Bruno Deme and Isabelle Grillo from the ILL for their help during the experiments.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Mohammad Reza Dehghani or Werner Kunz.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(docx 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoshsima, A., Dehghani, M.R., Touraud, D. et al. Nanostructures in clear and homogeneous mixtures of rapeseed oil and ethanol in the presence of green additives. Colloid Polym Sci 293, 3225–3235 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Nanostructures
  • Dynamic light scattering
  • Static light scattering
  • Conductivity measurements
  • Bicontinuous structure