Skip to main content
Log in

Ionic-liquid-based surfactants with unsaturated head group: synthesis and micellar properties of 1-(n-alkyl)-3-vinylimidazolium bromides

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Structural versatility is an important reason for the interest in ionic liquids (ILs) and ionic-liquid-based surfactants, ILBSs. We report here on the synthesis, characterization, and micellar properties of a series of ILBSs that carry unsaturation in the head group, 1-Cn-3-vinlyimidazolium bromide, CnVnImBr, Cn = C10, C12, C14, and C16, respectively. We studied this series at 298.15 K using surface tension, ultraviolet–visible (UV–vis) spectroscopy, and steady state fluorescence of solubilized methyl orange, MO, and pyrene, respectively. We studied the electrical conductance of CnVnImBr at 298.15 to 313.15 K. From the results of surface tension and conductivity, we calculated the area per surfactant at solution/air interface; the critical micelle concentration (cmc); the degree of counter-ion binding; and the enthalpy, entropy, and free energy of micellization. These properties showed the expected dependence on the length of Cn, and indicated that micellization is an entropy-driven process. We used fluorescence data to calculate the cmc, microscopic polarity of the interfacial region, and the micelle aggregation number. The UV–vis spectra of MO were used to calculate the cmc and probe dye–ILBS interactions in the pre- and post-micellar regimes. The aggregation behavior of C16VnImBr was compared with its saturated counterpart 1-(n-hexadecyl)-3-ethylimidazolium bromide, with 1-Cn-3-methylimidazolium bromides, and with “conventional” cationic surfactants, alkyltrimethylammonium bromides. The vinyl group is less hydrophobic than the ethyl moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A min :

Area per surfactant molecule at air–water interface

db:

Double bond

cmc:

Critical micelle concentration

CPC:

1-Cetylpyridinium chloride

CnVnImBr:

1-(n-Alkyl)-3-vinylimidazolium bromide

C16EtImBr:

1-(n-Hexadecyl)-3-ethylimidazolium bromide

CnMeImBr:

1-(n-Alkyl)-3-methylimidazolium bromide

CnMe3ABr:

N-(n-Alkyl)-N,N,N-trimethylammonium bromide

ΔG 0m :

Standard free energy of micelle formation

ΔH 0m :

Standard enthalpy of micelle formation

ILs:

Ionic liquids

ILBS:

Ionic-liquid-based surfactant

MO:

Methyl orange

N agg :

Micelle average aggregation number

pC 20 :

Surface adsorption efficiency

ΔS 0m :

Standard entropy of micelle formation

β:

Fraction of micelle-bound counter-ion

γ:

Surface tension

γcmc :

Surface tension at cmc

Γmax :

Maximum surface excess concentration

πcmc :

Surface pressure at cmc

References

  1. Roger RD, Seddon KR (2003) Ionic Liquids as Green Solvents: Progress and Prospects, American Chemical Society, Washington, D.C.

  2. Wasserscheid P, Welton T (2003) Ionic liquids in syntheses. VCH-Wiley, New York

    Google Scholar 

  3. Jungnickel C, Luczak J, Ranke J, Fernandez JF, Muller A, Thoming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Asp 316:278–284. doi:10.1016/j.colsurfa. 2007.09.020

    Article  CAS  Google Scholar 

  4. Vanyur R, Biczok L, Miskolczy Z (2007) Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colliods Surf A Physicochem Eng Asp 299:256–261

    Article  CAS  Google Scholar 

  5. Luczak J, Jungnickel C, Joskowska M, Thoming J, Hupka J (2009) Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 336:111–116

    Article  CAS  Google Scholar 

  6. Zhang H, Li K, Liang H, Wang J (2008) Spectroscopic studies of the aggregation of imidazolium-based ionic liquids. Colloids Surf A Physicochem Eng Asp 329:75–81

    Article  CAS  Google Scholar 

  7. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2010) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171

    Article  Google Scholar 

  8. Dong B, Zhao X, Zheng LQ, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A Physicochem Eng Asp 317:666–672

    Article  CAS  Google Scholar 

  9. Geng F, Liu J, Zheng L, Yu L, Li Z, Li G, Tung C (2010) Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J Chem Eng Data 55:147–151

    Article  CAS  Google Scholar 

  10. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304

    Article  Google Scholar 

  11. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241

    Article  CAS  Google Scholar 

  12. Sastry NV, Vaghela NM, Aswal VK (2012) Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib 327:22–29

    Article  CAS  Google Scholar 

  13. Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J Phys Chem B 112:16682–16689

    Article  CAS  Google Scholar 

  14. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia Lopes JN, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650

    Article  CAS  Google Scholar 

  15. Singh T, Kumar A (2007) Aggregation Behavior of Ionic Liquids in Aqueous Solutions: Effect of Alkyl Chain Length, Cations and Anions. J Phys Chem B 111:7843–7851

    Article  CAS  Google Scholar 

  16. Vaghela NM, Sastry NV, Aswal VK (2011) Surface active and aggregation behavior of methylimidazolium-based ionic liquids of type [Cnmim] [X], n=4, 6, 8 and [X]=Cl, Br, and I in water. Colloid Polym Sci 289:309–322

    Article  CAS  Google Scholar 

  17. Dong B, Li N, Zheng L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182

    Article  CAS  Google Scholar 

  18. Ao M, Kim D (2013) Aggregation behavior of aqueous solutions of 1-Dodecyl-3-methylimidazolium salts with different halide anions. J Chem Eng Data 58:1529–1534

    Article  CAS  Google Scholar 

  19. Anouti M, Jones J, Boisset A, Jacquemin J, Caravanier MC, Lemordant D (2009) Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. J Colloid Interface Sci 340:104–111

    Article  CAS  Google Scholar 

  20. Rather MA, Rather GM, Pandit SA, Bhat SA, Bhat MA (2015) Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV–vis spectrophotometry. Talanta 131:55–58

    Article  CAS  Google Scholar 

  21. Cheng N, Ma X, Sheng X, Wang T, Wang R, Jiao J, Yu L (2014) Aggregation behavior of anionic surface active ionic liquids with double hydrocarbon chains in aqueous solution: Experimental and theoretical investigations. Colloids Surf A Physicochem Eng Asp 453:53–61

    Article  CAS  Google Scholar 

  22. Modaressi A, Sifaoui H, Mielcarz M, Domanska U, Rogalski M (2007) Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions. Colloids Surf A Physicochem Eng Asp 302:181–185

    Article  CAS  Google Scholar 

  23. Wang X, Liu J, Yu L, Jiao J, Wang R, Sun L (2013) Surface adsorption and micelle formation of imidazolium-based zwitterionic surface active ionic liquids in aqueous solutions. J Colloid Interface Sci 391:103–110

    Article  CAS  Google Scholar 

  24. Singh T, Rao KS, Kumar A (2012) Effect of ethylene glycol and its derivatives on the aggregation behavior of an ionic liquid 1-butyl-3-methylimidazolium octyl sulfate in aqueous medium. J Phys Chem B 116:1612–1622

    Article  CAS  Google Scholar 

  25. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  26. Choi YS, Shim YN, Lee J, Yoon JH, Hong CS, Cheong M, Kim HS, Jang HG, Lee JS (2011) Ionic liquids as benign catalysts for the carbonylation of amines to formamides. Appl Catal A Gen 404:87–92

    Article  CAS  Google Scholar 

  27. Wang A, Zheng X, Zhao Z, Li C, Cui Y, Zheng X, Yin J, Yang G (2014) Bronsted acid ionic liquids catalyzed Friedel–Crafts Alkylations of electron-rich arenes with aldehydes. Appl Catal A Gen 482:198–204

    Article  CAS  Google Scholar 

  28. Bussamara R, Melo WWM, Scholten JD, Migowski P, Marin G, Zapata MJM, Machado G, Teixeira SR, Novak MA, Dupont J (2013) Controlled synthesis of Mn3O4 nanoparticles in ionic liquids. Dalton Trans 42:14473–14479

    Article  CAS  Google Scholar 

  29. Kim KS, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556–560

    Article  CAS  Google Scholar 

  30. Schutte K, Meyer H, Gemel C, Barthel J, Fischer RA, Janiak C (2014) Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. Nanoscale 6:3116–3126

    Article  Google Scholar 

  31. Yang X, Zhang S, Yu W, Liu Z, Lei L, Li N, Zhang H, Yu Y (2014) Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography. Talanta 124:1–6

    Article  CAS  Google Scholar 

  32. Khan AB, Ali M, Malik NA, Ali A, Patel R (2013) Role of 1-methyl-3-octyl imidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride. Colloids Surf B Biointerfaces 112:460–465

    Article  CAS  Google Scholar 

  33. Ohno H (2011) Electrochemical aspects of ionic liquids. John Wiley & Sons Inc, New Jersey

    Book  Google Scholar 

  34. Jana S, Parthiban A, Chai CLL (2010) Transparent, flexible and highly conductive ion gels from ionic liquid compatible cyclic carbonate network. Chem Commun 46:1488–1490

    Article  CAS  Google Scholar 

  35. Zhao Y, Yue X, Wang X, Huang D, Chen X (2012) Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Asp 412:90–95

    Article  CAS  Google Scholar 

  36. Wei Y, Wang F, Zhang Z, Ren C, Lin Y (2014) Micellization and thermodynamic study of 1-Alkyl-3-methylimidazolium tetrafluoroborate ionic liquids in aqueous solution. J Chem Eng Data 59:1120–1129

    Article  CAS  Google Scholar 

  37. Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  Google Scholar 

  38. Geng F, Zheng L, Yu L, Li G, Tung C (2010) Interaction of bovine serum albumin and long-chain imidazolium ionic liquid measured by fluorescence spectra and surface tension. Process Biochem 45:306–311

    Article  CAS  Google Scholar 

  39. Hua Y, Junyong W, Guoliang D, Aiguo Z, Hao C, Jianguo Y, Denan H (2012) Interaction mechanisms of ionic liquids [Cnmim]Br (n=4, 6, 8, 10) with bovine serum albumin. J Lumin 132:622–628

    Article  Google Scholar 

  40. Mahajan S, Sharma R, Mahajan RK (2012) An investigation of drug binding ability of a surface active ionic liquid: micellization, electrochemical, and spectroscopic studies. Langmuir 28:17238–17246

    Article  CAS  Google Scholar 

  41. Rao KS, Singh T, Trivedi TJ, Kumar A (2011) Aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J Phys Chem 115:13847–13853

    Article  Google Scholar 

  42. Pal A, Pillania A (2014) Self-aggregation of ionic liquid 1-butyl-2,3-imethylimidazolium tetrafluoroborate [C4mmim][BF4] in aqueous media: a conductometric, volumetric and spectroscopic study. Thermochim Acta 597:41–47

    Article  CAS  Google Scholar 

  43. Wang X, Yu L, Jiao J, Zhang H, Wang R, Chen H (2012) Aggregation behavior of COOH-functionalized imidazolium-based surface active ionic liquids in aqueous solution. J Mol Liq 173:103–107

    Article  CAS  Google Scholar 

  44. Kamboj R, Bharmoria P, Chauhan V, Singh S, Kumar A, Mithu VS, Kang TS (2014) Micellization behavior of morpholinium-based amide-functionalized ionic liquids in aqueous media. Langmuir 30:9920–9930

    Article  CAS  Google Scholar 

  45. Dong B, Gao Y, Su Y, Zheng L, Xu J, Inoue T (2010) Self- aggregation behavior of fluorescent carbazole-tailed imidazolium ionic liquids in aqueous solutions. J Phys Chem B 114:340–348

    Article  CAS  Google Scholar 

  46. Shi L, Li N, Yan H, Gao Y, Zheng L (2011) Aggregation behavior of long-chain n-aryl imidazolium bromide in aqueous solution. Langmuir 27:1618–1625

    Article  CAS  Google Scholar 

  47. Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2013) Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium and pyridinium-based ionic liquids in aqueous solution. Langmuir 29:2536–2545

    Article  CAS  Google Scholar 

  48. Bordes R, Tropsch J, Holmberg K (2010) Role of an amide bond for self-assembly of surfactants. Langmuir 26:3077–3083

    Article  CAS  Google Scholar 

  49. Zhang ZQ, Xu FG, Tai S, Liu X, Mo S, Niu F (2012) Surface tension and aggregation properties of novel cationic gemini surfactants with diethyl ammonium head groups and a diamido spacer. Langmuir 28:11979–11987

    Article  CAS  Google Scholar 

  50. Hoque J, Kumar P, Aswal VK, Haldar V (2012) Aggregation properties of amide bearing cleavable gemini surfactants by small angle neutron scattering and conductivity studies. J Phys Chem B 116:9718–9726

    Article  CAS  Google Scholar 

  51. Hansen GE, Dennison MD (1952) The potential constants of ethane. J Chem Phys 20:313–326

    Article  CAS  Google Scholar 

  52. Allen HC Jr, Plyler EK (1958) The structure of ethylene from infrared spectra. J Am Chem Soc 80:2673–2676

    Article  CAS  Google Scholar 

  53. Mannhold R, Rekker RF, Dross K, Bijlo G, De Vries G (1998) The lipophilic behaviour of organic compounds. 1. An updating of the hydrophobic fragmental constant approach. Quant Struct Act Relat 17:517–536

    Article  CAS  Google Scholar 

  54. Klevens HB (1953) Structure and aggregation in dilate solution of surface active agents. J Am Oil Chem Soc 30:74–80

    Article  CAS  Google Scholar 

  55. Durairaj B, Blum FD (1985) Micelle formation and terminal double bonds in sodium carboxylates. J Colloid Interface Sci 106:561–564

    Article  CAS  Google Scholar 

  56. Sprague ED, Duecker DC, Larrabee CE (1983) The effect of a terminal double bond on the micellization of a simple ionic surfactant. J Colloid Interface Sci 92:416–421

    Article  CAS  Google Scholar 

  57. Larrabee CE, Sprague ED (1986) Aggregation of sodium undecanoate and sodium 10-undecenoate in water at 37°C: Vapor pressure osmometry. J Colloid Interface Sci 114:256–260

    Article  CAS  Google Scholar 

  58. Damas C, Vannier L, Arabri M, Duchene A, Coudert R (1998) Micellar properties of a new series of stereochemical sodium carboxylates bearing double bonds near their ionic heads in aqueous media. J Colloid Interface Sci 198:323–329

    Article  CAS  Google Scholar 

  59. Damas C, Vannier L, Naejus R, Coudert R (1999) Influence of structural modifications near the polar head of sodium carboxylates on their aqueous solution behavior. Colloids Surf A Physicochem Eng Asp 152:183–187

    Article  CAS  Google Scholar 

  60. Yokoyama S, Nakagaki M (1993) Effect of double bond on the surface properties of aqueous solutions of eicosapolyenoic acids. Colloid Polym Sci 271:512–518

    Article  CAS  Google Scholar 

  61. Kuiper JM, Buwalda RT, Hulst R, Engberts JBFN (2001) Novel pyridinium surfactants with unsaturated alkyl chains: aggregation behavior and interactions with methyl orange in aqueous solution. Langmuir 17:5216–5224

    Article  CAS  Google Scholar 

  62. Lucero DG, Xometl OO, Palou RM, Likhanova NV, Aguilar MAD, Febles VG (2011) Synthesis of selected vinylimidazolium ionic liquids and their effectiveness as corrosion inhibitors for carbon steel in aqueous sulfuric acid. Ind Eng Chem Res 50:7129–7140

    Article  Google Scholar 

  63. Luo SC, Sun S, Deorukhkar AR, Lu JT, Bhattacharyya A, Lin IJB (2011) Ionic liquids and ionic liquid crystals of vinyl functionalized imidazolium salts. J Mater Chem 21:1866–1873

    Article  CAS  Google Scholar 

  64. Crescenzo AD, Demurtas D, Renzetti A, Siani G, Maria PD, Meneghetti M, Prato M, Fontana A (2009) Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant 1-hexadecyl-3-vinyl-imidazolium bromide in aqueous solution. Soft Matter 5:62–66

    Article  Google Scholar 

  65. Crescenzo AD, Aschi M, Canto ED, Giordani S, Demurtas D, Fontana A (2011) Structural modifications of ionic liquid surfactants for improving the water dispersibility of carbon nanotubes: an experimental and theoretical study. Phys Chem Chem Phys 13:11373–11383

    Article  Google Scholar 

  66. Damas C, Brembilla A, Baros F, Viriot ML, Lochon P (1994) Synthesis and behaviour study of amphiphilic polyvinylimidazolium salts in aqueous media: Effects of the microdomains on a bimolecular reaction involving hydrophobic reactants. Eur Polym J 30:1215–1222

    Article  CAS  Google Scholar 

  67. Damas C, Baggio S, Brembilla A, Lochon P (1997) Microstructure study of new amphiphilic copolymers from 3-alkyl-1-vinylimidazolium salts. Eur Polym J 33:1219–1224

    Article  CAS  Google Scholar 

  68. Harkins WD, Jordan HF (1930) A method for the determination of surface and interfacial tension from the maximum pull on a ring. J Am Chem Soc 52:1751–1772

    Article  CAS  Google Scholar 

  69. Rosen MJ (2004) Surfactants and Interfacial Phenomena, 3rd edn. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  70. Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337

    Article  CAS  Google Scholar 

  71. McAuliffe C (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J Phys Chem 70:1267–1275

    Article  CAS  Google Scholar 

  72. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. John Wiley, New York

    Google Scholar 

  73. Ray GB, Chakraborty I, Ghosh S, Moulik SP, Palepu R (2005) Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir 21:10958–10967

    Article  CAS  Google Scholar 

  74. Mukerjee P (1967) Nature of the association equilibriums and hydrophobic bonding in aqueous solutions of association colloids. Adv Colloid Interf Sci 1:242–275

    Article  Google Scholar 

  75. Mukerjee P, Mysels, KJ (1972) Critical Micelle Concentrations of Aqueous Surfactant Systems. National Bureau of Standards of NSRDS-NBS 36, Washington, DC 20234.

  76. Mosquera V, Rio JM, Attwood D, Garcia M, Jones MN, Prieto G, Suarez MJ, Sarmiento F (1998) A Study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J Colloid Interface Sci 206:66–76

    Article  CAS  Google Scholar 

  77. Bashford MT, Woolley EM (1985) Enthalpies of dilution of aqueous decyl-, dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromides at 10, 25, 40, and 55 °C. J Phys Chem 89:3173–3179

    Article  CAS  Google Scholar 

  78. Stauff J (1983) Z Phys Chem A 183:55

    Google Scholar 

  79. Klevens HB (1952) Solubilization in alcohol—soap micelles II electrolytes as additives. J Am Chem Soc 74:4624–4626

    Article  CAS  Google Scholar 

  80. Hafiane A, Dhahbi M, Chasseray X, Lemordant DJ (1998) J Colloid Interface Sci 205:21–25

    Article  CAS  Google Scholar 

  81. Zhao Y, Gao S, Wang J, Tang J (2008) Aggregation of Ionic Liquids CnMeImBr (n ) 4, 6, 8, 10, 12) in D2O: a NMR study. J Phys Chem B 112:2031–2039

    Article  CAS  Google Scholar 

  82. Baker GA, Pandey S, Pandey S, Baker S (2004) A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. Analyst 129:890–892

    Article  CAS  Google Scholar 

  83. Jones MJ, Chapman D (1995) Micelles, monolayers, and biomembranes. Wiley-LISS, New York

    Google Scholar 

  84. Holmberg K, Jonsson B, Kronberg B, Lindman B (2003) Surfactants and Polymers in aqueous solution. John Wiley & Sons Ltd, New York

    Google Scholar 

  85. Tadros TF (2005) Applied Surfactants, Principles and Applications . Wiley-VCH Verlag GmbH & Co, KGaA-Weinheim

    Book  Google Scholar 

  86. Nusselder JJH, Engberts JBFN (1992) Toward a better understanding of the driving force for micelle formation and micellar growth. J Colloid Interface Sci 148:353–361

    Article  CAS  Google Scholar 

  87. Sirieix-Plenet J, Gaillon L, Letellier P (2004) Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water: Potentiometric and conductimetric studies. Talanta 63:979–986

    Article  CAS  Google Scholar 

  88. Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5952

    Article  CAS  Google Scholar 

  89. Dong DC, Winnik MA (1982) Photochem. The Py scale of solvent polarities. Solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with ET and Y values. Photobiol 35:17–21

    Article  CAS  Google Scholar 

  90. Wang GJ, Engberts JBFN (1994) Induction of aggregate formation of cationic polysoaps and surfactants by low concentrations of additives in aqueous solution. Langmuir 10:2583–2587

    Article  CAS  Google Scholar 

  91. Quadrifoglio F, Crescenzi V (1971) The interaction of methyl orange and other azo-dyes with polyelectrolytes and with colloidal electrolytes in dilute aqueous solution. J Colloid Interface Sci 35:447–459

    Article  CAS  Google Scholar 

  92. Dutta RK, Bhat SN (1993) interaction of methyl orange with submicellar cationic surfactants. Bull Chem Soc Jpn 66:2457–2460

    Article  CAS  Google Scholar 

  93. Dutta RK, Bhat SN (1996) Interaction of phenazinium dyes and methyl orange with micelles of various charge types. Colloids Surf A Physicochem Eng Asp 106:127–134

    Article  CAS  Google Scholar 

  94. Buwalda RT, Jonker JM, Engberts JBFN (1999) Aggregation of azo dyes with cationic amphiphiles at low concentrations in aqueous solution. Langmuir 15:1083–1089

    Article  CAS  Google Scholar 

  95. Karukstis KK, Savin DA, Loftus CT, Angelo NDD (1998) Spectroscopic studies of the interaction of methyl orange with cationic alkyltrimethylammonium bromide surfactants. J Colloid Interface Sci 203:157–163

    Article  CAS  Google Scholar 

  96. Lueck HB, Rice BL, McHale JL (1992) Aggregation of triphenylmethane dyes in aqueous solution: Dimerization and trimerization of crystal violet and ethyl violet. Spectrochim Acta A 48:819–828

    Article  Google Scholar 

  97. Lueck HB, Mchale JL, Edwards WD (1992) Symmetry-breaking solvent effects on the electronic structure and spectra of a series of triphenylmethane dyes. J Am Chem Soc 114:2342–2348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank FAPESP (São Paulo State Research Foundation) for financial support of this work and a PD fellowship to N. I. Malek; CNPq (National Council for Scientific and Technological Research) for a research productivity fellowship to O. A. El Seoud, Maulana Azad National Fellowship (MANF-2012-13-MUS-GUJ-10818) for a research fellowship to Z. Vaid, and TEQIP fellowship to U. More.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naved I. Malek or Omar A. El Seoud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 230 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, N.I., Vaid, Z.S., More, U.U. et al. Ionic-liquid-based surfactants with unsaturated head group: synthesis and micellar properties of 1-(n-alkyl)-3-vinylimidazolium bromides. Colloid Polym Sci 293, 3213–3224 (2015). https://doi.org/10.1007/s00396-015-3746-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3746-x

Keywords

Navigation