Colloid and Polymer Science

, Volume 294, Issue 1, pp 157–170 | Cite as

Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex

  • Nagi Greesh
  • Suprakas Sinha RayEmail author
Original Contribution


Polystyrene (PS) colloid particles in presence of non-ionic surfactant-modified clay particles were prepared by the free-radical polymerization of styrene monomers in emulsion. Three different types of non-ionic surfactants, sorbitan monopalmitate (Span®40), polyethylene glycol octadecyl ether (Brij®S10), and polyoxyethylene (9) nonylphenylether (Igepal®Co-630) were used for the preparation of surfactant-modified clay. High-resolution transmission electron microscopy studies showed that few colloid PS particles with clay mineral layers at the surface were obtained; the particle sizes were observed to be in the micrometer size range, and stable dispersions were obtained when Span®40 and Igepal®Co-630 modified clay minerals were used as stabilizers. The clay mineral particles were observed to be mostly encapsulated by PS latex particles, and a typical morphology was observed when Brij®S10-modified clay was used as a stabilizer. This strategy can be applied to develop stable polymer latex particles via emulsion polymerization.

Graphical Abstract

The formation of stable polystyrene colloidal particles using non-ionic surfactant modified clay mineral


Non-ionic surfactants chemical structure Nanoclay particles Pickering emulsion Polystyrene nanocomposite latex 



The authors would like to thank the CSIR, DST, and NRF, South Africa, for their financial support.

Supplementary material

396_2015_3743_MOESM1_ESM.docx (24 kb)
ESM 1 This section summarizes the physical properties of EFD clay and discussion on emulsion polymerization in presence of pure surfactants.(DOCX 24 kb)


  1. 1.
    Anderson C, Daniels E (2003) Emulsion polymerization and latex applications. Rap Rev Rep 14:1–156Google Scholar
  2. 2.
    Asua JM (2004) Emulsion polymerization: from fundamental mechanisms to process developments. J Polym Sci Part A Polym Chem 42:1025–1041CrossRefGoogle Scholar
  3. 3.
    Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486CrossRefGoogle Scholar
  4. 4.
    Asua J (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346CrossRefGoogle Scholar
  5. 5.
    Schork F, Luo Y, Smulders W, Russum J, Butte A, Fontenot K (2005) Miniemulsion polymerization. Adv Polym Sci 175:129–255CrossRefGoogle Scholar
  6. 6.
    Kawaguchi S, Ito K (2005) Dispersion polymerization. Adv Polym Sci 175:299–328CrossRefGoogle Scholar
  7. 7.
    Saenz JM, Asua JM (1996) Dispersion polymerization of styrene and butylacrylate in polar solvents. J Polym Sci Part A Polym Chem 34:1977–1992CrossRefGoogle Scholar
  8. 8.
    Wu Y, Zhang J, Zhao H (2008) Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushes. J Polym Sci Part A Polym Chem 47:1535–1543CrossRefGoogle Scholar
  9. 9.
    Davis SS, Round HP, Purewal TS (1981) J Colloid Interface Sci 80:508–511CrossRefGoogle Scholar
  10. 10.
    Webster AJ, Cates ME (1998) Stabilization of emulsions by trapped species. Langmuir 14:2068–2079CrossRefGoogle Scholar
  11. 11.
    Jhaveri S, Koylu D, Maschke D, Carter K (2007) Synthesis of polymeric core-shell particles using surface-initiated living free-radical polymerization. J Polym Sci Part A Polym Chem 45:1575–1584CrossRefGoogle Scholar
  12. 12.
    Abismail B, Canselier J, Wilhelm A, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83CrossRefGoogle Scholar
  13. 13.
    Fontenot K, Schork F (1993) Sensitivities of droplet size and stability in monomeric emulsions. J Ind Eng Chem Res 32:373–385CrossRefGoogle Scholar
  14. 14.
    Soma J, Papadopoulos K (1996) Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-water emulsions. J Colloid Interface Sci 181:225–231CrossRefGoogle Scholar
  15. 15.
    Eshuis A, Leendertse H, Thoenes D (1991) Surfactant-free emulsion polymerization of styrene using crosslinked seed particles. Colloid Polym Sci 269:1086–1089CrossRefGoogle Scholar
  16. 16.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ɛ-caprolactam. J Mater Res 8:1174–1178CrossRefGoogle Scholar
  17. 17.
    Bonnefond A, Paulis M, Bon S, Leiz J (2013) Surfactant-free miniemulsion polymerization of nBA/S stabilized by NaMMT: films with improved water resistance. Langmuir 29:2397–2405CrossRefGoogle Scholar
  18. 18.
    Negrete-Herrera N, Putaux J, Bourgeat-Lami E (2006) Synthesis of polymer/laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchange laponite clay platelets. Prog Solid State Chem 34:121–137CrossRefGoogle Scholar
  19. 19.
    Greesh N, Sanderson R, Hartmann P (2012) Preparation of polystyrene-clay nanocomposites via dispersion polymerization using oligomeric styrene-montmorillonite as stabilizer. Polym Int 61:834–843CrossRefGoogle Scholar
  20. 20.
    Voorn D, Ming W, Herk AV (2006) Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39:2137–2143CrossRefGoogle Scholar
  21. 21.
    Yang Y, Liu L, Zhang J, Li C, Zhao H (2007) PMMA colloid particles stabilized by layered silicate with PMMA-b-PDMAEMA block copolymer brushes. Langumir 23:2867–2873CrossRefGoogle Scholar
  22. 22.
    Pickering SU (1907) Pickering emulsion. J Chem Soc Trans 91:2001–2021CrossRefGoogle Scholar
  23. 23.
    Cauvin S, Colver P, Bon F (2005) Pickering stabilized miniemulsion polymerization: preparation of clay armored latexes. Macromolecules 38:7887–7889CrossRefGoogle Scholar
  24. 24.
    Binks BP (2002) Particles as surfactants similarities and differences. Curr Opin Colloid Interface Sci 7:21–41CrossRefGoogle Scholar
  25. 25.
    Guillota S, Bergayaa F, Azevedoa C, Warmonta F, Tranchant J (2009) Internally structured Pickering emulsions stabilized by clay mineral particles. J Colloid Interface Sci 333:563–569CrossRefGoogle Scholar
  26. 26.
    Bon S, Colver P (2007) Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langumir 23:8316–8322CrossRefGoogle Scholar
  27. 27.
    Yang Y, Liu L, Zhang J, Li C, Zhao H (2007) PMMA colloid particles stabalization by layered silicate with PMMA-b-PDMAEMA block copolymer brushes. Langmuir 23:2867–2873CrossRefGoogle Scholar
  28. 28.
    Zhang J, Chen K, Zhao H (2008) PMMA colloid particles armored by clay layers with PDMAEMA polymer brushes. J Polym Sci Part A Polym Chem 46:2632–2639CrossRefGoogle Scholar
  29. 29.
    Putlitz B, Landfester K, Fischer H, Antonietti M (2001) The generation of armored latexes and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes. Adv Mater 13:500–504CrossRefGoogle Scholar
  30. 30.
    Samakande A, Sanderson R, Hartmann P (2008) Encapsulated clay particles in polystyrene by RAFT mediated miniemulsion polymerization. J Polym Sci Part A Polym Chem 46:7114–7126CrossRefGoogle Scholar
  31. 31.
    Voorn D, Ming W, Herk AV (2006) Clay platelets encapsulated inside latex particles. Macromolecules 39:4654–4656CrossRefGoogle Scholar
  32. 32.
    Tiarks F, Landfester K, Antonietti M (2001) Silica nanoparticles as surfactants and fillers for latexe made by miniemulsion polymerizations. Langmuir 17:5775–5780CrossRefGoogle Scholar
  33. 33.
    Negrete-Herrera N, Putaux L, David L, Bourgeat-Lami E (2006) Polymer/laponite composite colloids through emulsion polymerization: influence of the clay modification level on particle morphology. Macromolecules 39:9177–9184CrossRefGoogle Scholar
  34. 34.
    Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22:896–936CrossRefGoogle Scholar
  35. 35.
    Klein, A. Daniels, E. Formulation components. In Emulsion polymerization and emulsion polymers. In Lovell, P.; El-Aasser, M., Eds. Eds. John Wiley & Sons Ltd: New York, 1997; pp 207–237Google Scholar
  36. 36.
    Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. Phys Chem Chem Phys 1:3007–3016CrossRefGoogle Scholar
  37. 37.
    Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631CrossRefGoogle Scholar
  38. 38.
    Taylor P (1998) Ostwald ripening in emulsion. Adv Colloid and Interface Sci 75:107–163CrossRefGoogle Scholar
  39. 39.
    Welin-Berger K, Bergenstahl B (2000) Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase. Int J Pharm 200:249–260CrossRefGoogle Scholar
  40. 40.
    Zeeb B, Gibis M, Fischer L, Weiss J (2012) Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions. J Colloid Interface Sci 387:65–73CrossRefGoogle Scholar
  41. 41.
    Lin C, Wu J, Chern C (2013) Effects of the molecular weight of polymeric costabilizers on the Ostwald ripening behavior and the polymerization kinetics of styrene miniemulsions. Colloid Surf A Phys Chem Eng Asp 434:178–184CrossRefGoogle Scholar
  42. 42.
    Voorhees PW (1985) The theory of Ostwald ripping. J Stat Phys 38:231–252CrossRefGoogle Scholar
  43. 43.
    Kuehmann C, Voorhees P (1996) Ostwald ripening in ternary alloys. Metall Mater Trans A 27:937–943CrossRefGoogle Scholar
  44. 44.
    Greenland D (1963) The adsorption of polyvinyl alcohols by montmorillonite. J Colloid Sci 18:647–664CrossRefGoogle Scholar
  45. 45.
    Deng Y, Dixon JB, White GN (2006) Adsorption of polyacrylamide on smectite, illite, and kaolinite. Soil Sci Soc Amer J 70:297–304CrossRefGoogle Scholar
  46. 46.
    Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97.Google Scholar
  47. 47.
    Tong Z, Deng Y (2008) Kinetics of miniemulsion polymerization of styrene in the presence of organoclays. Macromol Mater Eng 293:529–537CrossRefGoogle Scholar
  48. 48.
    Vermaa S, Kumara S, Gokhaleb R, Burgess D (2011) Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 406:145–152CrossRefGoogle Scholar
  49. 49.
    Tcholakova S, Mitrinova Z, Golemanov K, Denkov N, Vethamuthu M, Ananthapadmanabhan K (2011) Control of Ostwald ripening by using surfactants with high surface modulus. Langmuir 27:14807–14819CrossRefGoogle Scholar
  50. 50.
    Takahara K, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsurmura M, Ohtani B (2005) Asymmetrically modified silica particles: a simple particulate surfactant for stabilization of oil droplets in water. J Amer Chem Soc 127:6271–6281CrossRefGoogle Scholar
  51. 51.
    Tong Z, Deng Y (2007) Synthesis of polystyrene encapsulated nanosaponite composite latex via miniemulsion polymerization. Polymer 48:4337–4343CrossRefGoogle Scholar
  52. 52.
    Herrera NN, Letoffe JM, Putaux JL, David L, Lami EB (2004) Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 20:1564–1571CrossRefGoogle Scholar
  53. 53.
    Huang X, Brittain WJ (2001) Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34:3255–3260CrossRefGoogle Scholar
  54. 54.
    Bouanani F, Bendedouch D, Hemeryb P, Bounaceur B (2008) Encapsulation of montmorillonite in nanoparticles by miniemulsion polymerization. Colloid Surf A Phys Chem Eng Asp 317:751–755CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations