Skip to main content
Log in

Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of α-tocopherol succinate-conjugated hydroxyethyl cellulose (HEC-TOS) polymers were synthesized in this study. The weight percentages of TOS in HEC-TOS were varied from 15 to 36 % by adjusting the weight ratios of TOS to HEC from 1:4 to 5:2. The HEC-TOS polymers exhibited typical properties of amphiphilic polymers and were able to self-assemble into spherical nanomicelle in aqueous solution as revealed by TEM. The micelle sizes and critical micelle concentrations (CMC) of HEC-TOS conjugates were correlated with their molecular structures and were in the range of 24.5–115.1 nm and 16–99 μg/ml, respectively. Paclitaxel (PTX) was encapsulated into the core of HEC-TOS micelle by sonication-dialysis method. The highest loading concentration of PTX in micelle was 315 mg/ml, which was about 50 times higher than that in water (6 mg/l). The in vitro study showed that PTX was continuously released from PTX-loaded micelle in phosphate buffered saline (PBS) medium for 108 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaucher G, Dufresne M, Sant VP, Kang N, Maysinger D, Leroux J (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3): 169–188

    Article  CAS  Google Scholar 

  2. Wei H, Zhuo R, Zhang X (2013) Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci 38(3):503–535

    Article  CAS  Google Scholar 

  3. Diaz IL, Perez LD (2015) Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers. Colloid Polym Sci 293(3):913–923

    Article  CAS  Google Scholar 

  4. Huang CK, Lo CL, Chen HH, Hsiue GH (2007) Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater 17(14):2291–2297

    Article  CAS  Google Scholar 

  5. Zhao L, Wu C, Wang F, Ying A, Xu C, Liu S (2014) Fabrication of biofunctional complex micelles with tunable structure for application in controlled drug release. Colloid Polym Sci 292(7):1675–1683

    Article  CAS  Google Scholar 

  6. Sezgin Z, Yüksel N, Baykara T (2006) Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 64(3):261–268

    Article  CAS  Google Scholar 

  7. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  Google Scholar 

  8. Tao Y, Liu R, Chen M, Yang C, Liu X (2012) Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel. J Mater Chem 22(2):373–380

    Article  CAS  Google Scholar 

  9. Li Y, Hua S, Xiao W, Wang H, Luo X, Li C, Cheng S, Zhang X, Zhuo R (2011) Dual-vectors of anti-cancer drugs and genes based on pH-sensitive micelles self-assembled from hybrid polypeptide copolymers. J Mater Chem 21(9):3100–3106

    Article  CAS  Google Scholar 

  10. Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5(2):329–352

    Article  CAS  Google Scholar 

  11. Zhang A, Zhang Z, Shi F, Ding J, Xiao C, Zhuang X, He C, Chen L, Chen X (2013) Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter 9(7):2224–2233

    Article  CAS  Google Scholar 

  12. Zou A, Chen Y, Huo M, Wang J, Zhang Y, Zhou J, Zhang Q (2013) In vivo studies of octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles loaded with doxorubicin for tumor-targeted delivery. J Pharm Sci 102(1):126–135

    Article  CAS  Google Scholar 

  13. Liu J, Zhang L (2007) Preparation of a polysaccharide-polyester diblock copolymer and its micellar characteristics. Carbohydr Polym 69(1):196–201

    Article  CAS  Google Scholar 

  14. Zhu A, Yuan L, Lu Y (2007) Synthesis and aggregation behavior of N-succinyl-O-carboxymethylchitosan in aqueous solutions. Colloid Polym Sci 285(14):1535–1541

    Article  CAS  Google Scholar 

  15. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  16. Wang X, Sun R (2011) Self-assembled lignocellulose micelles: a new generation of value-added functional nanostructures. Bioresources 6(3): 2288–2290

    CAS  Google Scholar 

  17. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  18. Dong H, Xu Q, Li Y, Mo S, Cai S, Liu L (2008) The synthesis of biodegradable graft copolymer cellulose-graft-poly (L-lactide) and the study of its controlled drug release. Colloids Surf B 66(1):26–33

    Article  CAS  Google Scholar 

  19. Guo Y, Wang X, Shen Z, Shu X, Sun R (2013) Preparation of cellulose-graft-poly (ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym 92(1):77–83

    Article  CAS  Google Scholar 

  20. Guo Y, Wang X, Shu X, Shen Z, Sun R (2012) Self-assembly and paclitaxel loading capacity of cellulose-graft-poly (lactide) nanomicelles. J Agric Food Chem 60(15):3900–3908

    Article  CAS  Google Scholar 

  21. Guo Y, Liu Q, Chen H, Wang X, Shen Z, Shu X, Sun R (2013) Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose 20(2):873–884

    Article  CAS  Google Scholar 

  22. Guo Y, Wang X, Li D, Du H, Wang X, Sun R (2012) Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polym Bull 69(4):389–403

    Article  CAS  Google Scholar 

  23. Ifuku S, Kadla JF (2008) Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules 9(11):3308–3313

    Article  CAS  Google Scholar 

  24. Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50(2):447–454

    Article  CAS  Google Scholar 

  25. Sui X, Yuan J, Zhou M, Zhang J, Yang H, Yuan W, Wei Y, Pan C (2008) Synthesis of cellulose-graft-poly (N, N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9(10):2615–2620

    Article  CAS  Google Scholar 

  26. Jiang G, Quan D, Liao K, Wang H (2006) Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharmaceuts 3(2):152–160

    Article  CAS  Google Scholar 

  27. Wang X, Guo Y, Li D, Chen H, Sun R (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48(45): 5569–5571

    Article  CAS  Google Scholar 

  28. Jiang C, Wang X, Sun P, Yang C (2011) Synthesis and solution behavior of poly(ɛ-caprolactone) grafted hydroxyethyl cellulose copolymers. Int J Biol Macromol 48(1):210–214

    Article  CAS  Google Scholar 

  29. Berthier DL, Herrmann A, Ouali L (2011) Synthesis of hydroxypropyl cellulose derivatives modified with amphiphilic diblock copolymer side-chains for the slow release of volatile molecules. Polym Chem 2(9):2093–2101

    Article  CAS  Google Scholar 

  30. Ma L, Kang H, Liu R, Huang Y (2010) Smart assembly behaviors of hydroxypropylcellulose-graft-poly (4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26(23):18519–18525

    Article  CAS  Google Scholar 

  31. Östmark E, Nyström D, Malmström E (2008) Unimolecular nanocontainers prepared by ROP and subsequent ATRP from hydroxypropylcellulose. Macromolecules 41(12):4405–4415

    Article  CAS  Google Scholar 

  32. Song Y, Zhang L, Gan W, Zhou J, Zhang L (2011) Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids Surf B 83(2):313–320

    Article  CAS  Google Scholar 

  33. Vidal RRL, Balaban R, Borsali R (2008) Amphiphilic derivatives of carboxymethylcellulose: evidence for intra-and intermolecular hydrophobic associations in aqueous solutions. Polym Eng Sci 48(10):2011–2026

    Article  CAS  Google Scholar 

  34. Wei Y, Cheng F (2007) Synthesis and aggregates of cellulose-based hydrophobically associating polymer. Carbohydr Polym 68(4):734–739

    Article  CAS  Google Scholar 

  35. Wei Y, Cheng F, Hou G, Sun S (2008) Amphiphilic cellulose: surface activity and aqueous self-assembly into nano-sized polymeric micelles. React Funct Polym 68(5):981–989

    Article  CAS  Google Scholar 

  36. Huang D, Yang Q, Jin S, Deng Q, Zhou P (2014) Self-assembly of cellulose nanoparticles as electrolyte additive for capillary electrophoresis separation. J Chromatogr A 1367:148–153

    Article  CAS  Google Scholar 

  37. Birringer M, EyTina JH, Salvatore BA, Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: structure-function relation. Brit J Cancer 88(12):1948–1955

    Article  CAS  Google Scholar 

  38. Liang N, Sun S, Li X, Piao H, Piao H, Cui F, Fang L (2012) α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Int J Pharmaceut 423(2):480–488

    Article  CAS  Google Scholar 

  39. Tao Y, Han J, Dou H (2012) Paclitaxel-loaded tocopheryl succinate-conjugated chitosan oligosaccharide nanoparticles for synergistic chemotherapy. J Mater Chem 22(18):8930–8937

    Article  CAS  Google Scholar 

  40. Tao Y, Han J, Wang X, Dou H (2013) Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Colloid Surface B 102:604–610

    Article  CAS  Google Scholar 

  41. Neuzil J, Weber T, Gellert N, Weber C (2001) Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer 84(1):87–89

    Article  CAS  Google Scholar 

  42. Neuzil J, Zhao M, Ostermann G, Sticha M, Gellert N, Weber C, Eaton JW, Brunk UT (2002) α-Tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem J 362:709–715

    Article  CAS  Google Scholar 

  43. Hasani MM, Westman G (2007) New coupling reagents for homogeneous esterification of cellulose. Cellulose 14(4):347–356

    Article  CAS  Google Scholar 

  44. Bagheri M, Shateri S, Niknejad H, Entezami AA (2014) Thermosensitive biotinylated hydroxypropyl cellulose-based polymer micelles as a nano-carrier for cancer-targeted drug delivery. J Polym Res 21(10):1–15

    Article  CAS  Google Scholar 

  45. Yao Z, Zhang C, Ping Q, Yu LL (2007) A series of novel chitosan derivatives: synthesis, characterization and micellar solubilization of paclitaxel. Carbohydr Polym 68(4):781–792

    Article  CAS  Google Scholar 

  46. Wang Y, Liu L, Jiang Q, Zhang Q (2007) Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur Polym J 43(1): 43–51

  47. Eldar-Boock A, Miller K, Sanchis J, Lupu R, Vicent MJ, Satchi-Fainaro R (2011) Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 32(15):3862–3874

    Article  CAS  Google Scholar 

  48. Lopez-Heredia MA, Bernard Kamphuis GJ, Thüne PC, Cumhur Öner F, Jansen JA, Frank Walboomers X (2011) An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials 32(23):5411–5416

    Article  CAS  Google Scholar 

  49. Li Y, Heo HJ, Gao GH, Kang SW, Huynh CT, Kim MS, Lee JW, Lee JH, Lee DS (2011) Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer 52(15):3304–3310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Open Foundation of the State Key Laboratory of Pulp and Papermaking Engineering, South China University of Technology (No. 201312); the Young Foundation of Dalian Polytechnic University (No. QNJJ201323); the National Science Foundation of China (No. 31170554; 51103046); and the China Education Ministry, Program for New Century Excellent Talents in University (NCET-13-0215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghui Zhou or Xiaohui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, L., Li, H. et al. Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid Polym Sci 294, 135–143 (2016). https://doi.org/10.1007/s00396-015-3736-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3736-z

Keywords

Navigation