Skip to main content
Log in

Design of new lanthanide pH switches based on a cross-linked poly(vinyl alcohol)/tetraethoxysilane hybrid matrix

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The design and synthesis of cross-linked siloxane and polymeric matrices incorporated with terbium or europium complexes have been studied. The preparation of hybrid hosts demonstrated that poly(vinyl alcohol) in the presence of tetraethoxysilane with various concentrations gave different mechanical stabilities and water solubilities. The as-derived films exhibited excellent photophysical properties of lanthanides with large Stokes shifts, narrow emissions, and high color purity. It has been found that the luminescent materials were dramatically quenched over the assayed pH ranges (pH 7 to 1 and pH 7 to 14). These optical probes could be recycled for ten times by changing the aqueous media. The novel inorganic-organic responsive films that can be switched on or off based on pH values will find potential application in biological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta VK, Singh AK, Al Khayat A, Gupta B (2007) Anal Chim Acta 590:81

    Article  CAS  Google Scholar 

  2. Gupta VK, Singh AK, Mehtab S, Gupta B (2006) Anal Chim Acta 566:5

    Article  CAS  Google Scholar 

  3. Prasad R, Gupta VK, Kumar A (2004) Anal Chim Acta 508:61

    Article  CAS  Google Scholar 

  4. Gupta VK, Prasad R, Kumar P, Mangla R (2000) Anal Chim Acta 420:19

    Article  CAS  Google Scholar 

  5. Gupta VK, Jain S, Chandra S (2003) Anal Chim Acta 486:199

    Article  CAS  Google Scholar 

  6. Gupta VK, Prasad R, Kumar A (2003) Talanta 60:149

    Article  CAS  Google Scholar 

  7. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Sensors Actuators B Chem 117:9

    Article  Google Scholar 

  8. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Sensors Actuators B Chem 113:182

    Article  CAS  Google Scholar 

  9. Gupta VK, Jain AK, Kumar P (2006) Sensors Actuators B Chem 120:259

    Article  CAS  Google Scholar 

  10. Gupta VK, Chandra S, Mangla R (2002) Electrochim Acta 47:1579

    Article  CAS  Google Scholar 

  11. Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) Electrochim Acta 51:2547

    Article  CAS  Google Scholar 

  12. Goyal RN, Gupta VK, Chatterjee S (2008) Electrochim Acta 53:5354

    Article  CAS  Google Scholar 

  13. Gupta VK, Chandra S, Lang H (2005) Talanta 66:575

    Article  CAS  Google Scholar 

  14. Goyal RN, Gupta VK, Chatterjee S (2008) Talanta 76:662

    Article  CAS  Google Scholar 

  15. Goyal RN, Gupta VK, Bachheti N (2007) Anal Chim Acta 597:82

    Article  CAS  Google Scholar 

  16. Gupta VK, Jain S, Khurana U (1997) Electroanalysis 9:478

    Article  CAS  Google Scholar 

  17. Gupta VK, Mangla R, Khurana U, Kumar P (1999) Electroanalysis 11:573

    Article  CAS  Google Scholar 

  18. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electroanalysis 20:757

    Article  CAS  Google Scholar 

  19. Srivastava SK, Gupta VK, Jain S (1996) Anal Chem 68:1272

    Article  CAS  Google Scholar 

  20. Jain AK, Gupta VK, Singh LP, Khurana U (1997) Analyst 122:583

    Article  CAS  Google Scholar 

  21. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Anal Biochem 407:79

    Article  CAS  Google Scholar 

  22. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Anal Biochem 408:179

    Article  CAS  Google Scholar 

  23. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Crit Rev Anal Chem 41:282

    Article  CAS  Google Scholar 

  24. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) J Mol Liq 177:114

    Article  CAS  Google Scholar 

  25. Gupta VK, Singh LP, Singh R, Upadhyay N, Kaur SP, Sethi B (2012) J Mol Liq 174:11

    Article  CAS  Google Scholar 

  26. Gupta VK, Nayak A, Agarwal S, Singhal B (2011) Comb Chem High Throughput Screen 14(4):284

    Article  CAS  Google Scholar 

  27. Parker D (2000) Coord Chem Rev 205:109

    Article  CAS  Google Scholar 

  28. Bünzli JCG, Piguet C (2005) Chem Soc Rev 34:1048

    Article  Google Scholar 

  29. Binnemans K (2009) Chem Rev 109:4283

    Article  CAS  Google Scholar 

  30. Mahajan RK, Kaur I, Kaur R, Uchida S, Onimaru A, Shinoda S, Tsukube H (2003) Chem Commun 17:2238

    Article  Google Scholar 

  31. Orcutt KM, Jones WS, McDonald A, Schrok D, Wallace KJ (2010) Sensors 10:1326

    Article  CAS  Google Scholar 

  32. Song B, Wang GL, Tan MQ, Yuan JL, Am J (2006) Chem Soc Rev 128:13442

    Article  CAS  Google Scholar 

  33. Yegorova AV, Scripinets YV, Duerkop A, Karasyov AA, Antonovich VP, Wolfbeis OS (2007) Anal Chim Acta 584:260

    Article  CAS  Google Scholar 

  34. Sun LN, Yu JB, Peng HS, Zhang JZ, Shi LY, Wolfbeis OS (2010) J Phys Chem C 114:12642

    Article  CAS  Google Scholar 

  35. McMahon BK, Pal R, Parker D (2013) Chem Commun 49:5363

    Article  CAS  Google Scholar 

  36. Yang YL, Wang YW, Duan DZ, Zhang AJ, Fang JG, Peng Y (2013) Org Biomol Chem 11:6960

    Article  CAS  Google Scholar 

  37. Gulgas CG, Reineke TM (2008) Inorg Chem 47:1548

    Article  CAS  Google Scholar 

  38. Tan MZ, Peng XJ, Fan JF, Wang JY, Sun SG (2012) Dyes Pigments 95:112

    Article  Google Scholar 

  39. Jokic T, Borisov SM, Saf R, Nielsen DA, Kuhl M, Klimant I (2012) Anal Chem 84:6723

    Article  CAS  Google Scholar 

  40. Lin J T, Zheng Y H. Wang Q M, Zeng Z, Zhang C C (2014) Anal Chim Acta 839:51.

    Article  CAS  Google Scholar 

  41. Dave BC, Dunn B, Valentine JS, Zink JI (1994) Anal Chem 66(22):1120A

    Article  CAS  Google Scholar 

  42. Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Grun J (1995) Anal Chem 67:22A

    Article  CAS  Google Scholar 

  43. MacCraith BD, Donagh CM, Keefe GO, McEvory AK, Butler T, Sheridan F (1995) Sensors Actuators B 29:51

    Article  CAS  Google Scholar 

  44. Christopher N, Nicholas A (1991) J Control Release 15:186

    Article  Google Scholar 

  45. Badini GE, Grattan KTV, Tseung ACC (1995) Analyst 120:1925

    Article  Google Scholar 

  46. Cajlakovic M (2002) Anal Chim Acta 455:207

    Article  CAS  Google Scholar 

  47. Nakane K, Jamashita T, Iwakura K, Suzuki FJ (1999) Appl Polym Sci 74:133

    Article  CAS  Google Scholar 

  48. Tan CL, Wang QM (2011) Inorg Chem 50:2953

    Article  CAS  Google Scholar 

  49. Zhang LG, Tan CL, Wang QM, Zhang CC (2011) Photochem Photobiol 87:1036

    Article  CAS  Google Scholar 

  50. Zheng YH, Liu DQ, Wang QM (2010) J Rare Earths 28:285

    Article  Google Scholar 

Download references

Acknowledgments

Q. M. acknowledges the support from the National Natural Science Foundation of China (Nos. 21371063 and 21328503), Excellent University Young Scholar Fund of Guangdong Province (Yq2013053), Guangzhou City Scientific Research Fund (2014J4100054), and Guangdong Science and Technology Plan (2013B010403025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianming Wang.

Electronic supplementary material

ESM 1

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Wang, Q. Design of new lanthanide pH switches based on a cross-linked poly(vinyl alcohol)/tetraethoxysilane hybrid matrix. Colloid Polym Sci 293, 2979–2984 (2015). https://doi.org/10.1007/s00396-015-3703-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3703-8

Keywords

Navigation