Skip to main content
Log in

Simple synthesis of high-quality CdTe QDs in spherical polyelectrolyte brushes with stable and reversible photoluminescence

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A facile method of high-quality CdTe quantum dots (QDs) synthesis in spherical polyelectrolyte brushes (SPBs) was reported in this work. The size of CdTe QDs, with emission color from green to red, could be tuned by adjusting the duration of nucleation, feed ratio of reductants (NaBH4/N2H4), and pH of precursor (SPB solution). Short duration of nucleation and low ratio of NaBH4/N2H4 could promote the growth rate of QDs to form big-sized CdTe QDs. The pH of SPB solution, in the range of 7–9, was optimal condition for formation of high-quality QDs. The SPB@CdTe exhibited high photochemical stability as the pH of mixture was above 10, which could be stored in the visible light for several months without aggregation and optical deterioration. The photoluminescence emission of SPB@CdTe could be reversibly quenched and restored with shrinkage and swollen shell if employed pH as a regulator.

The synthesis process of SPB@CdTe and its reversible photoluminesence emission at oscillating pH values

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aubert T, Soenen SJ, Wassmuth D, Cirillo M, Van Deun R, Braeckmans K, Hens Z (2014) Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long-term cell labeling. ACS Appl Mater Interfaces 6:11714–11723

    Article  CAS  Google Scholar 

  2. Tan M, Munusamy P, Mahalingam V, van Veggel FCJM (2007) Blue electroluminescence from InN@SiO2 nanomaterials. J Am Chem Soc 129:14122–14123

    Article  CAS  Google Scholar 

  3. Jańczewski D, Tomczak N, Han M, Vancso GJ (2009) Stimulus responsive PNIPAM/QD hybrid microspheres by copolymerization with surface engineered QDs. Macromolecules 42:1801–1804

    Article  Google Scholar 

  4. Zhang P, Liu S, Gao D, Hu D, Gong P, Sheng Z, Deng J, Ma Y, Cai L (2012) Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: conjugation-ready nanotags for living-virus labeling and imaging. J Am Chem Soc 134:8388–8391

    Article  CAS  Google Scholar 

  5. Sheng W, Kim S, Lee J, Kim S, Jensen K, Bawendi MG (2006) In-situ encapsulation of quantum dots into polymer microspheres. Langmuir 22:3782–3790

    Article  CAS  Google Scholar 

  6. Agrawal M, Gupta S, Pich A, Zafeiropoulos NE, Stamm M (2009) A facile approach to fabrication of ZnO–TiO2 hollow spheres. Chem Mater 21:5343–5348

    Article  CAS  Google Scholar 

  7. Titirici M, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812

    Article  CAS  Google Scholar 

  8. Fischer V, Bannwarth MB, Jakob G, Landfester K, Muñoz-Espí R (2013) Luminescent and magnetoresponsive multifunctional chalcogenide/polymer hybrid nanoparticles. J Phys Chem C 117:5999–6005

    Article  CAS  Google Scholar 

  9. Kuang M, Wang D, Bao H, Gao M, Möhwald H, Jiang M (2005) Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv Mater 17:267–270

    Article  CAS  Google Scholar 

  10. Wang S, Liu P, Wang X, Fu X (2005) Homogeneously distributed CdS nanoparticles in nafion membranes: preparation, characterization, and photocatalytic properties. Langmuir 21:11969–11973

    Article  CAS  Google Scholar 

  11. Kim HS, Jeong NC, Yoon KB (2011) Effect of water on the behavior of semiconductor quantum dots in zeolite Y: aggregation with framework destruction with H–Y and disaggregation with framework preservation for NH4–Y. J Am Chem Soc 133:1642–1645

    Article  CAS  Google Scholar 

  12. Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L (2011) Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Ind Eng Chem Res 50:13848–13853

    Article  CAS  Google Scholar 

  13. Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21:12229–12234

    Article  CAS  Google Scholar 

  14. Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32:6043–6046

    Article  CAS  Google Scholar 

  15. Stockmayer WH, Rice DW, Stephenson CC (1955) Thermodynamic properties of sodium borohydride and aqueous borohydride ion. J Am Chem Soc 77:1980–1983

    Article  CAS  Google Scholar 

  16. Wu S, Dou J, Zhang J, Zhang S (2012) A simple and economical one-pot method to synthesize high-quality water soluble CdTe QDs. J Mater Chem 22:14573–14578

    Article  CAS  Google Scholar 

  17. Wu S, Zhu Z, Siepenkoetter T, Guo X (2012) Platinum nanoparticles generated in spherical polyelectrolyte brushes and their high catalytic activity. Asia Pac J Chem Eng 7:886–891

    Article  CAS  Google Scholar 

  18. Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J Am Chem Soc 75:215–219

    Article  CAS  Google Scholar 

  19. Zhou D, Han J, Liu Y, Liu M, Zhang X, Zhang H, Yang B (2010) Nucleation of aqueous semiconductor nanocrystals: a neglected factor for determining the photoluminescence. J Phys Chem C 114:22487–22492

    Article  CAS  Google Scholar 

  20. Han J, Zhang H, Sun H, Zhou D, Yang B (2010) Manipulating the growth of aqueous semiconductor nanocrystals through amine-promoted kinetic process. Phys Chem Chem Phys 12:332–336

    Article  CAS  Google Scholar 

  21. Dou H, Yang W, Tao K, Li W, Sun K (2010) Thermal sensitive microgels with stable and reversible photoluminescence based on covalently bonded quantum dots. Langmuir 26:5022–5027

    Article  CAS  Google Scholar 

  22. Murray CB, Bawendi MG, Kagan CR (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54:8633–8643

    Article  Google Scholar 

  23. Yang J, Deng D, Yu J (2013) Transfer from trap emission to band-edge one in water-soluble CdS nanocrystals. J Colloid Interf Sci 394:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21004021,21374029, 51273063, 21476143), Shanghai education innovation key project (14ZZ061), the Fundamental Research Funds for the central universities (WA1014007,22220131011), State-key laboratory open subject SKL-ChE-11CO2, and the start funding of East China University of Science and Technology (YA0142119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Zhang or Xuhong Guo.

Electronic supplementary material

ESM 1

Diameter of SPBs at different synthetic process, size of CdTe QDs, the properties of SPB@CdTe with different duration of nucleation and the weight content of CdTe in the SPB at different pH values (DOCX 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cang, Y., Zhang, R., Shi, G. et al. Simple synthesis of high-quality CdTe QDs in spherical polyelectrolyte brushes with stable and reversible photoluminescence. Colloid Polym Sci 293, 3043–3047 (2015). https://doi.org/10.1007/s00396-015-3692-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3692-7

Keywords

Navigation