Skip to main content
Log in

Changes in the phase morphology of miktoarm PS-b-PMMA copolymer induced by a monolayer surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It is known that polystyrene (PS) and poly(methyl methacrylate) (PMMA) blocks are immiscible at 383, 413, and 443 K and that their Flory-Huggins interaction parameters have the same blending ratio dependence at those temperatures. In this study, the phase morphologies of six groups of 12 miktoarm PS-b-PMMA copolymers were investigated at 383, 413, and 443 K via MesoDyn simulations. There is nearly no change for the same copolymer under different temperatures. We designed four series of patterned surfaces (18 total) and found that the inducing effect of these surfaces has some influence on the microscopic phase morphology of the polymers, including a reinforcing immiscible effect and a weakening immiscible effect. The degree of phase separation depended on the molecular architecture of the block copolymers, temperature, and the characteristics of the inducing surfaces. Higher temperature and higher PS-rich component copolymers exhibited higher order parameters. The co-4432 and co-8832 surfaces exhibited the most intensive inducing effect because of their 16 and 32 independent micro-environments, respectively. A set of comparative simulations was carried out with a high interaction energy between the polymeric species. The results confirmed the possibility of forming a hexagonal columnar phase with a core shell composed of the designed molecular structures as well as demonstrated the potential application of micro-environments in producing special mesoscopic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Guarini KW, Black CT, Milkove KR, Sandstrom RL (2001) Nanoscale patterning using self-assembled polymers for semiconductor application. J Vac Sci Technol B 19(6):2784–2788

    Article  CAS  Google Scholar 

  2. Asakawa K, Hiraoka T, Hieda H, Sakurai M, Kamata Y, Naito K (2002) Nanopatterning with microdomains of block copolymers using reactive ion etching selectivity. Jpn J Appl Phys 41(10):6112–6118

    Article  CAS  Google Scholar 

  3. Nguyen PT, Wiesenauer EF, Gin DL, Noble RD (2013) Effect of composition and nanostructure on CO2/light gas transport properties of supported alkyl-imidazolium block copolymer membranes. J Membr Sci 430(1):312–320

    Article  CAS  Google Scholar 

  4. Zhu YQ, Liu L, Du JZ (2013) Probing into homopolymer self-assembly: how does hydrogen bonding influence morphology? Macromolecules 46(1):194–203

    Article  CAS  Google Scholar 

  5. Wang JB, de Jeu WH, Speiser M (2013) Biaxial alignment of block copolymer-complex lamellae. Soft Matter 9(4):1337–1343

    Article  CAS  Google Scholar 

  6. Herrninghaus S, Jacobs K, Mecke K, Bischof J, Fery A, Ibn-Elfraj M, Schlagowski S (1998) Spinodal dewetting in liquid crystal and lipid metal films. Science 282:916–919

    Article  CAS  Google Scholar 

  7. Dong YD, Larson I, Barnes TJ (2012) Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications. Langmuir 28(37):13485–13495

    Article  CAS  Google Scholar 

  8. Thurn-Albrecht T, Schotter J, Kästle A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290:2126–2129

    Article  CAS  Google Scholar 

  9. Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford CM, Huang E, Ball M, Tuominen M, Hawker CJ, Russell TP (2000) Nanoscopic templates from oriented block copolymer films. Adv Mater 12:787–791

    Article  CAS  Google Scholar 

  10. Black CT, Guarini KW, Milkove KR, Baker SM, Tuominen MT, Russell TP (2001) Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl Phys Lett 79(3):409–411

    Article  CAS  Google Scholar 

  11. Pershin A, Donets S, Baeurle SA (2012) A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices. J Chem Phys 136(19):194102–194112

    Article  Google Scholar 

  12. Ramirez-Piscina L, Sancho JM, Hernandéz-Machado A (1993) Numerical algorithm for Ginzburg-Landau equations with multiplicative noise: application to domain growth. Phys Rev B 48:125–131

    Article  CAS  Google Scholar 

  13. Jorn R, Voth GA (2012) Mesoscale simulation of proton transport in proton exchange membranes. J Phys Chem C 116(19):10476–10489

    Article  CAS  Google Scholar 

  14. Hegde RR, Spruiell JE, Bhat GS (2014) Investigation of the morphology of polypropylene-nanoclay nanocomposites. Polym Int 63(6):1112–1121

    Article  CAS  Google Scholar 

  15. Fraaije JGEM (1993) Dynamic density-functional theory for microphase separation kinetics of block-copolymer melts. J Chem Phys 99:9202–9212

    Article  CAS  Google Scholar 

  16. Fraaije JGEM, van Vlimmeren BAC, Maurits NM, Postma M, Evers OA, Hoffman C, Altevogt P, Goldbeck-Wood G (1997) The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J Chem Phys 106:4260–4269

    Article  CAS  Google Scholar 

  17. Jawalkar SS, Adoor SG, Sairam M, Nadagouda MN, Aminabhavi TM (2005) Molecular modelling on the binary blend compatibility of poly(vinylalcohol) and poly(methyl methacrylate): an atomistic simulation and thermodynamic approach. J Phys Chem B 109(32):15611–15620

    Article  CAS  Google Scholar 

  18. Mu D, Huang XR, Lu ZY, Sun CC (2008) Computer simulation study on the compatibility of poly(ethylene oxide)/poly(methyl methacrylate) blends. Chem Phys 348:122–129

    Article  CAS  Google Scholar 

  19. Mu D, Li JQ, Wang S (2011) Computer modeling study on the phase morphology of PS-b-PMMA copolymers. J Appl Polym Sci 119(1):265–274

    Article  CAS  Google Scholar 

  20. Mu D, Li JQ, Zhou YH (2011) Modeling and analysis of the compatibility of polystyrene/poly(methyl methacrylate) blends with four inducing effects. J Mol Model 17(3):607–619

    Article  CAS  Google Scholar 

  21. Mu D, Li JQ, Wang S (2013) MesoDyn simulation study on the phase morphologies of miktoarm PS-b-PMMA copolymer doped by nanoparticles. J Appl Polym Sci 127(3):1561–1568

    Article  CAS  Google Scholar 

  22. Mu D, Li JQ, Wang S (2011) Modeling and analysis of the compatibility of poly(ethylene oxide)/poly(methyl methacrylate) blends with surface and shear inducing effects. J Appl Polym Sci 122(1):64–75

    Article  CAS  Google Scholar 

  23. Mu D, Li JQ, Li WD, Wang S (2011) Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers. J Mol Model 17(12):3027–3038

    Article  CAS  Google Scholar 

  24. Ahn DU, Wang Z, Campbell IP (2012) Morphological evolution of thin PS/PMMA films: effects of surface energy and blend composition. Polymer 53(19):4187–4195

    Article  CAS  Google Scholar 

  25. Zhang H, Takeoka SJ (2012) Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method. Macromolecules 45(10):4315–4321

    Article  CAS  Google Scholar 

  26. Hu CL, Chen XD, Chen J (2012) Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman. Soft Matter 8(17):4780–4787

    Article  Google Scholar 

  27. Lee CF (2000) The properties of core-shell composite polymer latex: effect of heating on the morphology and physical properties of PMMA/PS core-shell composite latex and the polymer blends. Polymer 41(4):1337–1344

    Article  CAS  Google Scholar 

  28. Li X, Han YC, An LJ (2003) Surface morphology control of immiscible polymer-blend thin films. Polymer 44(26):8155–8165

    Article  CAS  Google Scholar 

  29. Debnath D, Khatua BB (2011) Preparation by suspension polymerization and characterization of polystyrene (PS)-poly(methyl methacrylate) (PMMA) core-shell nanocomposites. Macromol Res 19(6):519–527

    Article  CAS  Google Scholar 

  30. Spiro JG, IIly N, Winnik MA, Vavasour JD, Whitmore MD (2012) Theory of lamellar superstructure from a mixture of two cylindrical PS-PMMA block copolymers. Macromolecules 45(10):4289–4294

    Article  CAS  Google Scholar 

  31. Patel S, Thakar R, Wong J, Mcleod SD, Li S (2006) Control of cell adhesion on poly(methyl methacrylate). Biomaterials 27(14):2890–2897

    Article  CAS  Google Scholar 

  32. Chiu HC, Chern CS, Lee CK, Chang HF (1998) Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer 39:1609–1616

    Article  CAS  Google Scholar 

  33. Guo SR, Shen LJ, Feng LX (2001) Surface characterization of blood compatible amphiphilic graft copolymers having uniform poly(ethylene oxide) side chains. Polymer 42:1017–1022

    Article  CAS  Google Scholar 

  34. Eisa T, Sefton MV (1993) Towards the preparation of a MMA-PEO block-copolymer for the microencapsulation of MAMMALIAN-cells. Biomaterials 14(10):755–761

    Article  CAS  Google Scholar 

  35. van Vlimmeren BAC, Maurits NM, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (1999) Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules 32:646–656

    Article  Google Scholar 

  36. Mark JE (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant 21203164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Mu or Jian-Quan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Li, JQ. & Wang, S. Changes in the phase morphology of miktoarm PS-b-PMMA copolymer induced by a monolayer surface. Colloid Polym Sci 293, 2831–2844 (2015). https://doi.org/10.1007/s00396-015-3686-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3686-5

Keywords

Navigation