Extensional rheology and stability behavior of alumina suspensions in the presence of AMPS-modified polycarboxylate ether-based copolymers


A series of polycarboxylate ether-based copolymers that include acrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and polyethylene glycol-1000 was synthesized, and the performance of these copolymers as rheology modifiers in aqueous alumina suspensions was characterized. We discussed the effect of monomer feed ratio and molecular weight on dispersing ability of these copolymers and on extensional behavior of alumina suspensions. Results of zeta potential analysis determined that using the copolymers even at 0.5 wt.% results in all-negative zeta potentials for the entire pH range (2–12). These copolymers immensely affect the extensional rheological behavior of alumina suspensions—while 20 vol.% pure alumina suspension showed severe strain hardening behavior, suspensions with 1 wt.% copolymers and 35 vol.% alumina particles displayed no strain hardening. In this series, the copolymer with lowest molecular weight decreased the extensional viscosity of suspensions at the rupture of thread with three orders of magnitude as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Bouhamed H, Boufi S, Magnin A (2009) Alumina interaction with AMPS-MPEG copolymers produced by RAFT polymerization: stability and rheological behavior. J Colloid Interf Sci 333(1):209–220. doi:10.1016/j.jcis.2009.01.030

    CAS  Article  Google Scholar 

  2. 2.

    Bouhamed H, Magnin A, Boufi S (2006) Alumina interaction with AMPS-MPEG random copolymers III. Effect of PEG segment length on adsorption, electrokinetic and rheological behavior. J Colloid Interf Sci 298(1):238–247. doi:10.1016/j.jcis.2005.12.004

    CAS  Article  Google Scholar 

  3. 3.

    Seerden KAM, Reis N, Evans JRG, Grant PS, Halloran JW, Derby B (2001) Ink-jet printing of wax-based alumina suspensions. J Am Ceram Soc 84(11):2514–2520. doi:10.1111/j.1151-2916.2001.tb01045.x

    CAS  Article  Google Scholar 

  4. 4.

    Schrijnemakers A, Andre S, Lumay G, Vandewalle N, Boschini F, Cloots R, Vertruyen B (2009) Mullite coatings on ceramic substrates: stabilisation of Al2O3-SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying. J Eur Ceram Soc 29(11):2169–2175. doi:10.1016/j.jeurceramsoc.2009.01.031

    CAS  Article  Google Scholar 

  5. 5.

    Studart AR, Amstad E, Gauckler LJ (2007) Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir 23(3):1081–1090. doi:10.1021/la062042s

    CAS  Article  Google Scholar 

  6. 6.

    Mohanty S, Das B, Dhara S (2013) Poly(maleic acid)—a novel dispersant for aqueous alumina slurry. Journal of Asian Ceramic Societies 1(2):184–190. doi:10.1016/j.jascer.2013.05.005

    Article  Google Scholar 

  7. 7.

    Whitby CP, Scales PJ, Grieser F, Healy TW, Kirby G, Lewis JA, Zukoski CF (2003) PAA/PEO comb polymer effects on rheological properties and inter-particle forces in aqueous silica suspensions. J Colloid Interf Sci 262(1):274–281. doi:10.1016/S0021-9797(03)00179-6

    CAS  Article  Google Scholar 

  8. 8.

    Tsai CJ, Chen CN, Tseng WJ (2013) Rheology, structure, and sintering of zirconia suspensions with pyrogallol-poly(ethylene glycol) as polymeric surfactant. J Eur Ceram Soc 33(15-16):3177–3184. doi:10.1016/j.jeurceramsoc.2013.06.006

    CAS  Article  Google Scholar 

  9. 9.

    Bhosale PS, Berg JC (2010) Poly(acrylic acid) as a rheology modifier for dense alumina dispersions in high ionic strength environments. Colloid Surface A 362(1-3):71–76. doi:10.1016/j.colsurfa.2010.03.043

    CAS  Article  Google Scholar 

  10. 10.

    Liu Y, Gao L (2003) Dispersion of aqueous alumina suspensions using copolymers with synergistic functional groups. Mater Chem Phys 82(2):362–369. doi:10.1016/S0254-0584(03)00268-2

    CAS  Article  Google Scholar 

  11. 11.

    Neves RG, Ferrari B, Sanchez-Herencia AJ, Pagnoux C, Gordo E (2014) Role of stabilisers in the design of Ti aqueous suspensions for pressure slip casting. Powder Technol 263:81–88. doi:10.1016/j.powtec.2014.04.093

    CAS  Article  Google Scholar 

  12. 12.

    Liu Y, Gao L (2003) Deflocculation study of aqueous nanosized Y–TZP suspensions. Mater Chem Phys 78(2):480–485. doi:10.1016/S0254-0584(02)00338-3

    CAS  Article  Google Scholar 

  13. 13.

    Xiao C, Gao L, Lu M, Chen H, Guo L, Tao L (2010) Synergistic effect of copolymer and poly(vinylpyrrolidone) mixtures on rheology of aqueous SiC suspensions. Colloid Surface A 355(1–3):104–108. doi:10.1016/j.colsurfa.2009.11.045

    CAS  Article  Google Scholar 

  14. 14.

    Liao TS, Hwang CL, Ye YS, Hsu KC (2006) Effects of a carboxylic acid/sulfonic acid copolymer on the material properties of cementitious materials. Cem Concr Res 36(4):650–655. doi:10.1016/j.cemconres.2005.10.005

    CAS  Article  Google Scholar 

  15. 15.

    Ran QP, Qiao M, Liu JP, Miao CW (2012) SMA-g-MPEG comb-like polymer as a dispersant for Al2O3 suspensions. Appl Surf Sci 258(7):2447–2453. doi:10.1016/j.apsusc.2011.10.068

    CAS  Article  Google Scholar 

  16. 16.

    Mogalicherla AK, Lee S, Pfeifer P, Dittmeyer R (2014) Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels. Microfluid Nanofluid 16(4):655–666. doi:10.1007/s10404-013-1260-3

    CAS  Article  Google Scholar 

  17. 17.

    Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848. doi:10.1002/aic.690480902

    CAS  Article  Google Scholar 

  18. 18.

    Lu SH, Liu G, Ma YF, Li F (2010) Synthesis and application of a new vinyl copolymer superplasticizer. J Appl Polym Sci 117(1):273–280. doi:10.1002/App.31984

    CAS  Google Scholar 

  19. 19.

    Buyukyagci A, Tuzcu G, Aras L (2009) Synthesis of copolymers of methoxy polyethylene glycol acrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid: its characterization and application as superplasticizer in concrete. Cem Concr Res 39(7):629–635. doi:10.1016/j.cemconres.2009.03.010

    CAS  Article  Google Scholar 

  20. 20.

    Salami OT, Plank J (2012) Synthesis, effectiveness, and working mechanism of humic acid-{sodium 2-acrylamido-2-methylpropane sulfonate-co-N,N-dimethyl acrylamide-co-acrylic acid} graft copolymer as high-temperature fluid loss additive in oil well cementing. J Appl Polym Sci 126(4):1449–1460. doi:10.1002/App.36725

    CAS  Article  Google Scholar 

  21. 21.

    Masel RI (1996) Principles of adsorption and reaction on solid surfaces. John Wiley & Sons, New York

    Google Scholar 

  22. 22.

    Bouhamed H, Boufi S, Magnin A (2007) Dispersion of alumina suspension using comb-like and diblock copolymers produced by RAFT polymerization of AMPS and MPEG. J Colloid Interface Sci 312(2):279–291. doi:10.1016/j.jcis.2007.03.060

    CAS  Article  Google Scholar 

  23. 23.

    Bouhamed H, Boufi S, Magnin A (2005) Alumina interaction with AMPS-PEG random copolymer II. Stability and rheological behavior. Colloid Surface A 253(1-3):145–153. doi:10.1016/j.colsurfa.2004.11.002

    CAS  Article  Google Scholar 

  24. 24.

    Evanko CR, Delisio RF, Dzombak DA, Novak Jr JW (1997) Influence of aqueous solution chemistry on the surface charge, viscosity and stability of concentrated alumina dispersions in water. Colloid Surface A 125(2–3):95–107. doi:10.1016/S0927-7757(96)03874-5

    CAS  Article  Google Scholar 

  25. 25.

    Tseng WJ, Wu CH (2003) Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. Ceram Int 29(7):821–828. doi:10.1016/S0272-8842(03)00023-3

    CAS  Article  Google Scholar 

  26. 26.

    McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, British Society of Rheology

    Google Scholar 

  27. 27.

    Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.1021/Bm300407q

    CAS  Article  Google Scholar 

  28. 28.

    Viebke C, Meadows J, Kennedy JC, Williams PA (1998) Effect of soluble polymers on the shear and extensional viscosity characteristics of a concentrated latex dispersion. Langmuir 14(7):1548–1553. doi:10.1021/La971009q

    CAS  Article  Google Scholar 

  29. 29.

    Sigmund WM, Bell NS, Bergstrom L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83(7):1557–1574

    CAS  Article  Google Scholar 

  30. 30.

    Jain S, Goossens JGP, Peters GWM, van Duin M, Lemstra PJ (2008) Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter 4(9):1848–1854. doi:10.1039/B802905a

    CAS  Article  Google Scholar 

  31. 31.

    Min GK, Bevan MA, Prieve DC, Patterson GD (2002) Light scattering characterization of polystyrene latex with and without adsorbed polymer. Colloid Surface A 202(1):9–21. doi:10.1016/S0927-7757(01)01060-3

    CAS  Article  Google Scholar 

  32. 32.

    White EEB, Chellamuthu M, Rothstein JP (2009) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49(2):119–129. doi:10.1007/s00397-009-0415-3

    Article  Google Scholar 

  33. 33.

    Rincon A, Chinelatto ASA, Moreno R (2014) Tape casting of alumina/zirconia suspensions containing graphene oxide. J Eur Ceram Soc 34(7):1819–1827. doi:10.1016/j.jeurceramsoc.2013.12.027

    CAS  Article  Google Scholar 

  34. 34.

    Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Tran Soc Rheol 3(1):137–152. doi:10.1122/1.548848

    CAS  Article  Google Scholar 

Download references


Dr. Akbulut acknowledges Marie Curie Reintegration Grant.

Author information



Corresponding author

Correspondence to Yusuf Z. Menceloglu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akhlaghi, O., Akbulut, O. & Menceloglu, Y.Z. Extensional rheology and stability behavior of alumina suspensions in the presence of AMPS-modified polycarboxylate ether-based copolymers. Colloid Polym Sci 293, 2867–2876 (2015). https://doi.org/10.1007/s00396-015-3683-8

Download citation


  • Dispersant
  • Extensional rheology
  • Stability
  • Alumina
  • Copolymer