Colloid and Polymer Science

, Volume 293, Issue 10, pp 2867–2876 | Cite as

Extensional rheology and stability behavior of alumina suspensions in the presence of AMPS-modified polycarboxylate ether-based copolymers

  • Omid Akhlaghi
  • Ozge Akbulut
  • Yusuf Z. Menceloglu
Original Contribution

Abstract

A series of polycarboxylate ether-based copolymers that include acrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and polyethylene glycol-1000 was synthesized, and the performance of these copolymers as rheology modifiers in aqueous alumina suspensions was characterized. We discussed the effect of monomer feed ratio and molecular weight on dispersing ability of these copolymers and on extensional behavior of alumina suspensions. Results of zeta potential analysis determined that using the copolymers even at 0.5 wt.% results in all-negative zeta potentials for the entire pH range (2–12). These copolymers immensely affect the extensional rheological behavior of alumina suspensions—while 20 vol.% pure alumina suspension showed severe strain hardening behavior, suspensions with 1 wt.% copolymers and 35 vol.% alumina particles displayed no strain hardening. In this series, the copolymer with lowest molecular weight decreased the extensional viscosity of suspensions at the rupture of thread with three orders of magnitude as well.

Keywords

Dispersant Extensional rheology Stability Alumina Copolymer 

References

  1. 1.
    Bouhamed H, Boufi S, Magnin A (2009) Alumina interaction with AMPS-MPEG copolymers produced by RAFT polymerization: stability and rheological behavior. J Colloid Interf Sci 333(1):209–220. doi:10.1016/j.jcis.2009.01.030 CrossRefGoogle Scholar
  2. 2.
    Bouhamed H, Magnin A, Boufi S (2006) Alumina interaction with AMPS-MPEG random copolymers III. Effect of PEG segment length on adsorption, electrokinetic and rheological behavior. J Colloid Interf Sci 298(1):238–247. doi:10.1016/j.jcis.2005.12.004 CrossRefGoogle Scholar
  3. 3.
    Seerden KAM, Reis N, Evans JRG, Grant PS, Halloran JW, Derby B (2001) Ink-jet printing of wax-based alumina suspensions. J Am Ceram Soc 84(11):2514–2520. doi:10.1111/j.1151-2916.2001.tb01045.x CrossRefGoogle Scholar
  4. 4.
    Schrijnemakers A, Andre S, Lumay G, Vandewalle N, Boschini F, Cloots R, Vertruyen B (2009) Mullite coatings on ceramic substrates: stabilisation of Al2O3-SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying. J Eur Ceram Soc 29(11):2169–2175. doi:10.1016/j.jeurceramsoc.2009.01.031 CrossRefGoogle Scholar
  5. 5.
    Studart AR, Amstad E, Gauckler LJ (2007) Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir 23(3):1081–1090. doi:10.1021/la062042s CrossRefGoogle Scholar
  6. 6.
    Mohanty S, Das B, Dhara S (2013) Poly(maleic acid)—a novel dispersant for aqueous alumina slurry. Journal of Asian Ceramic Societies 1(2):184–190. doi:10.1016/j.jascer.2013.05.005 CrossRefGoogle Scholar
  7. 7.
    Whitby CP, Scales PJ, Grieser F, Healy TW, Kirby G, Lewis JA, Zukoski CF (2003) PAA/PEO comb polymer effects on rheological properties and inter-particle forces in aqueous silica suspensions. J Colloid Interf Sci 262(1):274–281. doi:10.1016/S0021-9797(03)00179-6 CrossRefGoogle Scholar
  8. 8.
    Tsai CJ, Chen CN, Tseng WJ (2013) Rheology, structure, and sintering of zirconia suspensions with pyrogallol-poly(ethylene glycol) as polymeric surfactant. J Eur Ceram Soc 33(15-16):3177–3184. doi:10.1016/j.jeurceramsoc.2013.06.006 CrossRefGoogle Scholar
  9. 9.
    Bhosale PS, Berg JC (2010) Poly(acrylic acid) as a rheology modifier for dense alumina dispersions in high ionic strength environments. Colloid Surface A 362(1-3):71–76. doi:10.1016/j.colsurfa.2010.03.043 CrossRefGoogle Scholar
  10. 10.
    Liu Y, Gao L (2003) Dispersion of aqueous alumina suspensions using copolymers with synergistic functional groups. Mater Chem Phys 82(2):362–369. doi:10.1016/S0254-0584(03)00268-2 CrossRefGoogle Scholar
  11. 11.
    Neves RG, Ferrari B, Sanchez-Herencia AJ, Pagnoux C, Gordo E (2014) Role of stabilisers in the design of Ti aqueous suspensions for pressure slip casting. Powder Technol 263:81–88. doi:10.1016/j.powtec.2014.04.093 CrossRefGoogle Scholar
  12. 12.
    Liu Y, Gao L (2003) Deflocculation study of aqueous nanosized Y–TZP suspensions. Mater Chem Phys 78(2):480–485. doi:10.1016/S0254-0584(02)00338-3 CrossRefGoogle Scholar
  13. 13.
    Xiao C, Gao L, Lu M, Chen H, Guo L, Tao L (2010) Synergistic effect of copolymer and poly(vinylpyrrolidone) mixtures on rheology of aqueous SiC suspensions. Colloid Surface A 355(1–3):104–108. doi:10.1016/j.colsurfa.2009.11.045 CrossRefGoogle Scholar
  14. 14.
    Liao TS, Hwang CL, Ye YS, Hsu KC (2006) Effects of a carboxylic acid/sulfonic acid copolymer on the material properties of cementitious materials. Cem Concr Res 36(4):650–655. doi:10.1016/j.cemconres.2005.10.005 CrossRefGoogle Scholar
  15. 15.
    Ran QP, Qiao M, Liu JP, Miao CW (2012) SMA-g-MPEG comb-like polymer as a dispersant for Al2O3 suspensions. Appl Surf Sci 258(7):2447–2453. doi:10.1016/j.apsusc.2011.10.068 CrossRefGoogle Scholar
  16. 16.
    Mogalicherla AK, Lee S, Pfeifer P, Dittmeyer R (2014) Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels. Microfluid Nanofluid 16(4):655–666. doi:10.1007/s10404-013-1260-3 CrossRefGoogle Scholar
  17. 17.
    Basaran OA (2002) Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J 48(9):1842–1848. doi:10.1002/aic.690480902 CrossRefGoogle Scholar
  18. 18.
    Lu SH, Liu G, Ma YF, Li F (2010) Synthesis and application of a new vinyl copolymer superplasticizer. J Appl Polym Sci 117(1):273–280. doi:10.1002/App.31984 Google Scholar
  19. 19.
    Buyukyagci A, Tuzcu G, Aras L (2009) Synthesis of copolymers of methoxy polyethylene glycol acrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid: its characterization and application as superplasticizer in concrete. Cem Concr Res 39(7):629–635. doi:10.1016/j.cemconres.2009.03.010 CrossRefGoogle Scholar
  20. 20.
    Salami OT, Plank J (2012) Synthesis, effectiveness, and working mechanism of humic acid-{sodium 2-acrylamido-2-methylpropane sulfonate-co-N,N-dimethyl acrylamide-co-acrylic acid} graft copolymer as high-temperature fluid loss additive in oil well cementing. J Appl Polym Sci 126(4):1449–1460. doi:10.1002/App.36725 CrossRefGoogle Scholar
  21. 21.
    Masel RI (1996) Principles of adsorption and reaction on solid surfaces. John Wiley & Sons, New YorkGoogle Scholar
  22. 22.
    Bouhamed H, Boufi S, Magnin A (2007) Dispersion of alumina suspension using comb-like and diblock copolymers produced by RAFT polymerization of AMPS and MPEG. J Colloid Interface Sci 312(2):279–291. doi:10.1016/j.jcis.2007.03.060 CrossRefGoogle Scholar
  23. 23.
    Bouhamed H, Boufi S, Magnin A (2005) Alumina interaction with AMPS-PEG random copolymer II. Stability and rheological behavior. Colloid Surface A 253(1-3):145–153. doi:10.1016/j.colsurfa.2004.11.002 CrossRefGoogle Scholar
  24. 24.
    Evanko CR, Delisio RF, Dzombak DA, Novak Jr JW (1997) Influence of aqueous solution chemistry on the surface charge, viscosity and stability of concentrated alumina dispersions in water. Colloid Surface A 125(2–3):95–107. doi:10.1016/S0927-7757(96)03874-5 CrossRefGoogle Scholar
  25. 25.
    Tseng WJ, Wu CH (2003) Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. Ceram Int 29(7):821–828. doi:10.1016/S0272-8842(03)00023-3 CrossRefGoogle Scholar
  26. 26.
    McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, British Society of RheologyGoogle Scholar
  27. 27.
    Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.1021/Bm300407q CrossRefGoogle Scholar
  28. 28.
    Viebke C, Meadows J, Kennedy JC, Williams PA (1998) Effect of soluble polymers on the shear and extensional viscosity characteristics of a concentrated latex dispersion. Langmuir 14(7):1548–1553. doi:10.1021/La971009q CrossRefGoogle Scholar
  29. 29.
    Sigmund WM, Bell NS, Bergstrom L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83(7):1557–1574CrossRefGoogle Scholar
  30. 30.
    Jain S, Goossens JGP, Peters GWM, van Duin M, Lemstra PJ (2008) Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter 4(9):1848–1854. doi:10.1039/B802905a CrossRefGoogle Scholar
  31. 31.
    Min GK, Bevan MA, Prieve DC, Patterson GD (2002) Light scattering characterization of polystyrene latex with and without adsorbed polymer. Colloid Surface A 202(1):9–21. doi:10.1016/S0927-7757(01)01060-3 CrossRefGoogle Scholar
  32. 32.
    White EEB, Chellamuthu M, Rothstein JP (2009) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49(2):119–129. doi:10.1007/s00397-009-0415-3 CrossRefGoogle Scholar
  33. 33.
    Rincon A, Chinelatto ASA, Moreno R (2014) Tape casting of alumina/zirconia suspensions containing graphene oxide. J Eur Ceram Soc 34(7):1819–1827. doi:10.1016/j.jeurceramsoc.2013.12.027 CrossRefGoogle Scholar
  34. 34.
    Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Tran Soc Rheol 3(1):137–152. doi:10.1122/1.548848 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Omid Akhlaghi
    • 1
  • Ozge Akbulut
    • 1
  • Yusuf Z. Menceloglu
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations