Spontaneous evolution of self-assembled phases from anisotropic colloidal dispersions


We demonstrate spontaneous evolution of various self-assembled phases from a homogeneous aqueous dispersion of high aspect ratio Montmorillonite (MMT, platelet diameter ~250 nm and thickness 1 nm) nanoclay platelets based on the observations made over a period of 4 years. The phase diagram for this system in salt-free suspensions in normal pH conditions using rheology, light scattering, and dilution experiments was established, and we have noticed that these suspensions do undergo nontrivial phase evolution yielding formation of equilibrium fluids and gels and aging dynamics. This observation showed that the yield stress dependence on the concentration of clay followed a power-law behavior similar to low aspect ratio Laponite nanoclay dispersions. During the initial period, all dispersions formed stable sols, and with aging network-like structures were found to form via two routes not reported hitherto: one for below gelation concentration by phase separation and another for above the same, through equilibrium gelation resembling the Laponite nanoclay system, where existence of patchy colloids, equilibrium gels, and empty liquids was observed experimentally.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Adams M, Dogic Z, Keller SL, Fraden S (1998) Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393:349–352

    CAS  Article  Google Scholar 

  2. 2.

    Van der Kooij FM, Kassapidou K, Lekkerkerker HNW (2000) Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406:868–871

    Article  Google Scholar 

  3. 3.

    Michot LJ, Bihannic I, Porsch K, Maddi S, Baravian C, Mougel J, Levitz P (2004) Phase diagrams of Wyoming Na-Montmorillonite clay. Influence of particle anisotropy. Langmuir 20:10829–10837

    CAS  Google Scholar 

  4. 4.

    Shalkevich A, Stradner A, Bhat SK, Muller F, Schurtenberger P (2007) Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir 23:3570–3580

    CAS  Article  Google Scholar 

  5. 5.

    Pujala RK, Pawar N, Bohidar HB (2011) Universal sol state behavior and gelation kinetics in mixed clay dispersions. Langmuir 27:5193–5203

    CAS  Article  Google Scholar 

  6. 6.

    Paineau E, Michot LJ, Bihannic I, Baravian C (2011) Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir 27:7806–7819

    CAS  Article  Google Scholar 

  7. 7.

    Lagaly G (1989) Principles of flow of kaolin and bentonite dispersions. Appl Clay Sci 4:105–123

    CAS  Article  Google Scholar 

  8. 8.

    Ruzicka B, Zaccarelli E, Zulian L, Angelini R, Sztucki M, Moussaid A, Narayanan T, Sciortino F (2011) Observation of empty liquids and equilibrium gels in a colloidal clay. Nat Mater 10:56–60

    CAS  Article  Google Scholar 

  9. 9.

    Pujala RK, Bohidar HB (2013) Slow dynamics, hydration and heterogeneity in Laponite dispersions. Soft Matter 9:2003–2010

    CAS  Article  Google Scholar 

  10. 10.

    Meneses-Juarez E, Varga S, Orea P, Odriozola G (2013) Towards understanding the empty liquid of colloidal platelets: vapour-liquid phase coexistence of square-well oblate ellipsoids. Soft Matter 9:5277–5284

    CAS  Article  Google Scholar 

  11. 11.

    Abranyi A, Szazdi L, Pukanszky JB, Vancso GJ, Pukanszky B (2006) Formation and detection of clay network structure in poly(propylene)/layered silicate nanocomposites. Macromol Rapid Commun 27:132–135

    CAS  Article  Google Scholar 

  12. 12.

    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–346

    CAS  Article  Google Scholar 

  13. 13.

    Havriliak S, Negami SA (1966) A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci C14:99–117

    Google Scholar 

  14. 14.

    Carreau PJ, Bousmina M, Ajji A (1994) Rheological properties of blends: facts and challenges. Prog Pacific Polym Sci 3:25–39

    Article  Google Scholar 

  15. 15.

    Herschel W, Bulkley R (1926) Konsistenzmessungen von Gummi-Benzollosungen. Colloid Polym Sci. 39:291–300

    Google Scholar 

  16. 16.

    Pignon F, Piau JM, Magnin A (1996) Structure and pertinent length scale of a discotic clay gel. Phys Rev Lett 76:4857–4860

    CAS  Article  Google Scholar 

  17. 17.

    Goh R, Leong YK, Lehane B (2011) Bentonite slurries—zeta potential, yield stress, adsorbed additive and time-dependent behavior. Rheol Acta 50:29–38

    CAS  Article  Google Scholar 

  18. 18.

    Jonsson B, Labbez C, Cabane B (2008) Interaction of nanometric clay platelets. Langmuir 24:11406–11413

    CAS  Article  Google Scholar 

  19. 19.

    Callaghan IC, Ottewill RH (1974) Interparticle forces in Montmorillonite gels. Faraday Discuss Chem Soc 57:110

    CAS  Article  Google Scholar 

  20. 20.

    Varga S, Meneses-Juárezb E, Odriozola G (2013) Empty liquid state and self-assembly of high valence non-spherical colloidal systems. Soft Matter 9:11178–11182

    CAS  Article  Google Scholar 

  21. 21.

    De Lisi R, Gradzielski M, Lazzara G, Milioto S, Muratore N, Prévost S (2008) Aqueous Laponite clay dispersions in the presence of poly(ethylene oxide) or poly(propylene oxide) oligomers and their triblock copolymers. J Phys Chem B 112:9328–9336

    Article  Google Scholar 

Download references


RKP and NJ acknowledge receipt of Senior and Research Fellowship from Council of Scientific and Industrial Research and University Grants Commission, Government of India, respectively.

Author information



Corresponding author

Correspondence to H. B. Bohidar.

Electronic Supplementary Material


† Electronic supplementary material available: The supporting information includes sections on the sample preparation and the methods used (Rheology, DLS, TEM, SEM, viscosity), flow curves (Figure S2), evolution of loss modulus (Figure S3) and elastic modulus (S4) for different concentrations of clay. (DOCX 321 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pujala, R.K., Joshi, N. & Bohidar, H.B. Spontaneous evolution of self-assembled phases from anisotropic colloidal dispersions. Colloid Polym Sci 293, 2883–2890 (2015). https://doi.org/10.1007/s00396-015-3651-3

Download citation


  • Self-assembled phases
  • Equilibrium gels
  • Empty liquids
  • Long-term aging
  • Anisotropic colloids
  • Phase separation