Skip to main content
Log in

Effect of ionic liquid C2mimBr on rheological behavior of Gemini surfactant 12-2-12 aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The rheological properties of Gemini surfactant 12-2-12 solutions in the absence and presence of ionic liquid C2mimBr have been investigated systemically. The results have shown that the 12-2-12 solutions with lower concentrations exhibit typical Newtonian fluid behavior and predominately viscous. The solutions with higher surfactant concentration show shear thinning property and have viscoelastic nature. However, the addition of C2mimBr changes the rheological properties of 12-2-12 solutions significantly. The steady-shear viscosity and the plateau modulus increase obviously, and the mixed solutions fit the Maxwell’s mechanical model as linear viscoelastic fluid. The effect of C2mimBr on surfactant solution mainly derives from the strong compress effect of counter-ion on electrical double layer near hydrophilic head groups of 12-2-12, the π-π stacking among imidazole rings, and the hydrogen bonding interaction between N+ of [C2mim]+ and water. These comprehensive effects promote the entanglement of surfactant micelles and thus leading to the formation and further compaction of network structures, which have been confirmed directly by cryo-scanning electron microscopy (cryo-SEM) micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu YL, Fang Y, Cai K (2001) Development of studying on molecule interactions between polymers and surfactants, China Surfact. Deterg Cosmet 4:26–31

    Google Scholar 

  2. Wang XP, Tang JA, Jiang L (1997) Study of surfactant–polyacrylamide interactions. Chin Sci Bull 7:710–714

    Google Scholar 

  3. Shashkina JA, Philippova OE, Zaroslov YD, Khokhlov AR, Pryakhina TA, Blagodatskikh IV (2005) Rheology of viscoelastic solutions of cationic surfactant: effect of added associating polymer. Langmuir 21:1524–1530

    Article  CAS  Google Scholar 

  4. Schubert BA, Wagner NJ, Kaler EW, Raghavan SR (2004) Shear-induced phase separation in solutions of wormlike micelles. Langmuir 20:3564–3573

    Article  CAS  Google Scholar 

  5. Wang C, Tam KC (2005) Interactions between polyarylic acid and sodium dodecylsulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies. J Phys Chem B 109:5156–5161

    Article  CAS  Google Scholar 

  6. Jain N, Trabelsi S, Guillot S, Mcloughlin D, Langevin D, Letellier P, Turmine M (2004) Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir 20:8496–8503

    Article  CAS  Google Scholar 

  7. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  CAS  Google Scholar 

  8. Candau SJ, Hirsch E, Zana R, Adam M (1988) Network properties of semidilute aqueous KBr solutions of cetyltrimethylammonium bromide. J Colloid Interface Sci 122:430–440

    Article  CAS  Google Scholar 

  9. Candau SJ, Hirsch E, Zana R, Delsanti M (1989) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide. Langmuir 5:1225–1229

    Article  CAS  Google Scholar 

  10. Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96:474–484

    Article  CAS  Google Scholar 

  11. Aswal VK, Goyal PS, Thiyagarajan P (1998) Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions. J Phys Chem B 102:2469–2473

    Article  CAS  Google Scholar 

  12. Soltero JFA, Puig JE, Manero O (1996) Rheology of the cetyltrimethylammoniumtosilate–water system. 2. Linear viscoelastic regime. Langmuir 12:2654–2662

    Article  CAS  Google Scholar 

  13. Magid LJ (1998) The surfactant-polyelectrolyte analogy. J Phys Chem B 102:4064–4074

    Article  CAS  Google Scholar 

  14. Kern F, Zana R, Candau SJ (1991) Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium salicylate and sodium chloride. Langmuir 7:1344–1351

    Article  CAS  Google Scholar 

  15. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296

    Article  CAS  Google Scholar 

  16. Khatory A, Lequeux F, Kern F, Candau SJ (1993) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content. Langmuir 9:1456–1464

    Article  CAS  Google Scholar 

  17. Fischer P, Rehage H (1997) Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature. Langmuir 13:7012–7020

    Article  CAS  Google Scholar 

  18. Hassan PA, Candau SJ, Kern F, Manohar C (1998) Rheology of wormlike micelles with varying hydrophobicity of the counterion. Langmuir 14:6025–6029

    Article  CAS  Google Scholar 

  19. Hartmann V, Cressely R (1998) Linear and nonlinear rheology of a wormlike micellar system in presence of sodium tosylate. Rheol Acta 37:115–121

    Article  CAS  Google Scholar 

  20. Croce V, Cosgrove T, Dreiss CA, Maitland G, Hughes T, Karlsson G (2004) Impacting the length of wormlike micelles using mixed surfactant systems. Langmuir 20:7984–7990

    Article  CAS  Google Scholar 

  21. Siriwatwechakul W, LaFleur T, Prud’homme RK, Sullivan P (2004) Effects of organic solvents on the scission energy of rodlike micelles. Langmuir 20:8970–8974

    Article  CAS  Google Scholar 

  22. Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7:276–281

    Article  CAS  Google Scholar 

  23. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933

    Article  CAS  Google Scholar 

  24. Hoffmann H (1994) Structure and flow in surfactant solutions. In: Herb CA, Prud'homme RK (eds) ACS Symposium Series 578. American Chemical Society, Washington, DC

  25. Savins JG (1969) Contrasts in the solution drag reduction characteristics of polymeric solution and micellar systems. In: Wells CS (ed) Viscous drag reduction. Plenum Press, New York, pp 183–212

    Chapter  Google Scholar 

  26. Arleth L, Bergstroem M (2002) Small angle neutron scattering study of the growth behavior, flexibility and intermicellar interactions of wormlike SDS micelles in NaBr aqueous solutions. Langmuir 18:5343–5353

    Article  CAS  Google Scholar 

  27. Mu JH, Li GZ (2001) The formation of wormlike micelles in anionic surfactant aqueous solutions in the presence of bivalent counterion. Chem Phys Lett 345:100–104

    Article  CAS  Google Scholar 

  28. Mu JH, Li GZ (2001) Rheology of viscoelastic anionic micellar solutions in the presence of a multivalent counterions. Colloid Polym Sci 279:872–878

    Article  CAS  Google Scholar 

  29. Hassan PA, Raghavan SR, Kaler EW (2002) Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 18:2543

    Article  CAS  Google Scholar 

  30. Maeda H, Yamamoto A, Souda M, Kawasaki H, Hossain KS, Nemoto N, Almgren M (2001) Effects of protonation on the viscoelastic properties of tetradecyldimethylamine oxide micelles. J Phys Chem B 105:5411–5418

    Article  CAS  Google Scholar 

  31. Groswasser AB, Zana R, Talmon Y (2000) Sphere-to-cylinder transition in aqueous micellar solution of a dimeric (Gemini) surfactant. J Phys Chem B 104:4005

    Article  Google Scholar 

  32. Welton T (1999) Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  33. Earle MJ, Esperanca JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  CAS  Google Scholar 

  34. Łuczak J, Jungnickel C, Łącka I, Stolte S, Hupka J (2010) Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem 12:593–601

    Article  Google Scholar 

  35. Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829

    Article  CAS  Google Scholar 

  36. Gao Y, Han S, Han B, Li G, Shen D, Li Z, Du J, Hou W, Zhang G (2005) TX-100/Water/1-Butyl-3-methylimidazolium hexafluorophosphate microemulsions. Langmuir 21:5681–5684

    Article  CAS  Google Scholar 

  37. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  Google Scholar 

  38. Firestone MA, Dzielawa JA, Zapol P, Curtiss LA, Seifert S, Dietz ML (2002) Lyotropic liquid-crystalline gel formation in a room temperature ionic liquid. Langmuir 18:7258–7260

    Article  CAS  Google Scholar 

  39. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    Article  CAS  Google Scholar 

  40. Pal A, Datta S, Aswal VK, Bhattacharya S (2012) Small-angle neutron-scattering studies of mixed micellar structures made of dimeric surfactants having imidazolium and ammonium headgroups. J Phys Chem B 116:13239–13247

    Article  CAS  Google Scholar 

  41. Krishan K, Ana LBB, Sougata D, Monica MU, Clara AR, Paturu K, Elena J, Bhattacharya S, Emilio A (2015) A delocalizable cationic headgroup together with an oligo-oxyethylene spacer in gemini cationic lipids improves their biological activity as vectors of plasmid DNA. J Mater Chem B 3:1495–1506

    Article  Google Scholar 

  42. Wang SZ, Yin TX, Shen WG (2014) Comparative investigations on mixing behaviors of cationic gemini surfactant with surface active ionic liquid in water and in ethylammonium nitrate. Ind Eng Chem Res 53:18202–18208

    Article  CAS  Google Scholar 

  43. Łuczak J, Hupka J, Thöming J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A 329:125–133

    Article  Google Scholar 

  44. Shang YZ, Wang TF, Han X, Peng CJ, Liu HL (2010) Effect of ionic liquids CnmimBr on properties of gemini surfactant 12-3-12 aqueous solution. Ind Eng Chem Res 49:8852–8857

    Article  CAS  Google Scholar 

  45. Zana R, Benrraou M, Rueff R (1991) Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir 7:1072–1075

    Article  CAS  Google Scholar 

  46. Zhang DQ, Cao Y, Zhang HD, Yang YL, Zhang YX (2002) Interaction of fluorocarbon and hydrocarbon hydrophically co-modified PAA with a nonionic surfactant: theological properties of polymer solutions in the absence of salt. Polymer 43:2075–2084

    Article  Google Scholar 

  47. Granek R, Cates ME (1992) Stress relaxation in living polymers: results from a Poisson renewal model. J Chem Phys 96:4758–4768

    Article  CAS  Google Scholar 

  48. Oda R, Narayanan J, Hassan PA, Manohar C, Salkar RA, Kern F, Candau SJ (1998) Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactants. Langmuir 14:4364–4372

    Article  CAS  Google Scholar 

  49. Acharya DP, Shiba HY, Aratani K (2004) Phase and rheological behavior of novel Gemini-type surfactant systems. J Phys Chem B 108:1790–1797

    Article  CAS  Google Scholar 

  50. Acharya DP, Hattori K, Sakai T, Kunieda H (2003) Phase and rheological behavior of salt-free alkyltrimethylammonium bromide/alkanoyl-N-methylethanolamide/water systems. Langmuir 19:9173–9178

    Article  CAS  Google Scholar 

  51. Groswasser AB, Zana R, Talmon Y (2000) Microstructures in aqueous solutions of mixed dimeric surfactants: vesicle transformation into networks of thread-like micelles. J Phys Chem B 104:12192

    Article  Google Scholar 

  52. Montalvo G, Valiente M, Rodenas E (1996) Rheological properties of the L phase and the hexagonal, lamellar and cubic liquid crystals of the CTAB/benzylalcohol/water system. Langmuir 12:5202–5208

    Article  CAS  Google Scholar 

  53. Pei XM, Xu ZH, Song BL, Cui ZG, Zhao JX (2014) Wormlike micelles formed in catanionic systems dominated by cationic Gemini surfactant: synergistic effect with high efficiency. Colloids Surf, A 443:508–514

    Article  CAS  Google Scholar 

  54. Fukada K, Suzuki E, Seimiya T (1999) Rheological properties of sodium hyaluronate in decyltrimethylammonium bromide aqueous solutions1. Langmuir 15:4217–4221

    Article  CAS  Google Scholar 

  55. Liu WW, Cheng LY, Zhang YM, Wang HP, Yu MF (2008) The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J Mol Liq 140:68–72

    Article  CAS  Google Scholar 

  56. Haldar J, Aswal VK, Goyal PS, Bhattacharya S (2001) Molecular modulation of surfactant aggregation in water: effect of the incorporation of multiple headgroups on micellar properties. Angew Chem Int Ed 40:1228–1232

    Article  CAS  Google Scholar 

  57. Haldar J, Aswal VK, Goyal PS, Bhattacharya S (2001) Role of incorporation of multiple headgroups in cationic surfactants in determining micellar properties. Small-angle-neutron-scattering and fluorescence studies. J Phys Chem B 105:12803–12808

    Article  CAS  Google Scholar 

  58. Bhattacharya S, Samanta SK (2011) Surfactants possessing multiple polar heads. A perspective on their unique aggregation behavior and applications. J Phys Chem Lett 2:914–920

    Article  CAS  Google Scholar 

  59. Javadian S, Ruhi V, Heydari A, Asadzadeh Shahir A, Yousefi A, Akbari J (2013) Self-assembled CTAB nanostructures in aqueous/ionic liquid systems: effects of hydrogen bonding. Ind Eng Chem Res 52:4517–4526

    Article  CAS  Google Scholar 

  60. Datta S, Biswas J, Bhattacharya S (2014) How does spacer length of imidazolium gemini surfactants control the fabrication of 2D-Langmuir films of silver-nanoparticles at the air–water interface? J Colloid Interface Sci 430:85–92

    Article  CAS  Google Scholar 

  61. Liang YW, Song JC, Shang YZ, Peng CJ, Liu HL (2014) The effect of ionic liquids in aqueous multiphase liquid-liquid equilibrium system. Sci Sin Chim 44:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Projects No. 21173079, 91334203, 21476072), the 111 Project (No. B08021), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yazhuo Shang or Honglai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Wang, Y., He, Z. et al. Effect of ionic liquid C2mimBr on rheological behavior of Gemini surfactant 12-2-12 aqueous solution. Colloid Polym Sci 293, 2373–2383 (2015). https://doi.org/10.1007/s00396-015-3629-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3629-1

Keywords

Navigation