Skip to main content
Log in

Phase behavior and electron transfer properties of ferrocenyl cholesteryl N-formanidoformamide gelator: a computational study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were carried out to investigate the conformations of a ferrocenyl cholesteryl N-formanidoformamide (Fc-LS) gelator in methanol and 1-pentanol. Our results showed that Fc-LS molecules form a gel in 1-pentanol, but not in methanol. In the Fc-LS/methanol system, Fc-LS molecules aggregated into clusters stabilized by intermolecular hydrogen bonds. In the Fc-LS/1-pentanol system, the Fc-LS molecules dispersed uniformly in the solvent; in addition, the solvent molecules gathered around the Fc-LS molecules. Calculation of diffusion coefficients showed that the Fc-LS/1-pentanol system behaves like a gel over a wide range of temperatures, while the Fc-LS/methanol system behaves more like a liquid. Charge-transfer properties of the Fc-LS/methanol and Fc-LS/1-pentanol systems were also investigated by quantum mechanical (QM) calculations. The results indicated that the electron transfer integrals of the Fc-LS/1-pentanol system are larger than those of the Fc-LS/methanol system. This suggests that the former is a favorable system for electron transport. Finally, our study demonstrated that the combination of MD and QM represents an effective approach to investigate conductive-gel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185(1):3–27. doi:10.1016/s0376-7388(00)00631-1

    Article  CAS  Google Scholar 

  2. Otero TF, Sansinena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10(6):491–494

    Article  CAS  Google Scholar 

  3. Moriyama M, Mizoshita N, Yokota T, Kishimoto K, Kato T (2003) Photoresponsive anisotropic soft solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv Mater 15(16):1335–1338. doi:10.1002/adma.200305056

    Article  CAS  Google Scholar 

  4. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3159. doi:10.1021/cr9700282

    Article  CAS  Google Scholar 

  5. George M, Weiss RG (2006) Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39(8):489–497. doi:10.1021/ar0500923

    Article  CAS  Google Scholar 

  6. Wang R, Geiger C, Chen LH, Swanson B, Whitten DG (2000) Direct observation of sol-gel conversion: the role of the solvent in organogel formation. J Am Chem Soc 122(10):2399–2400. doi:10.1021/ja993991t

    Article  CAS  Google Scholar 

  7. Morris KL, Chen L, Raeburn J, Sellick OR, Cotanda P, Paul A, Griffiths PC, King SM, O’Reilly RK, Serpell LC, Adams DJ (2013) Chemically programmed self-sorting of gelator networks. Nat Commun 4. doi:10.1038/ncomms2499

  8. Haines SR, Harrison RG (2002) Novel resorcinarene-based pH-triggered gelator. Chem Commun 23:2846–2847. doi:10.1039/b203462j

    Article  Google Scholar 

  9. George M, Weiss RG (2003) Primary alkyl amines as latent gelators and their organogel adducts with neutral triatomic molecules. Langmuir 19(4):1017–1025. doi:10.1021/la026639t

    Article  CAS  Google Scholar 

  10. Patel AR, Remijn C, Heussen PCM, den Adel R, Velikov KP (2013) Novel low-molecular-weight-gelator-based microcapsules with controllable morphology and temperature responsiveness. ChemPhysChem 14(2):305–310. doi:10.1002/cphc.201200942

    Article  CAS  Google Scholar 

  11. Tong X, Zhao Y, An BK, Park SY (2006) Fluorescent liquid-crystal gels with electrically switchable photoluminescence. Adv Funct Mater 16(14):1799–1804. doi:10.1002/adfm.200500868

    Article  CAS  Google Scholar 

  12. Lin YC, Weiss RG (1987) A novel gelator of organic liquids and the properties of its gels. Macromolecules 20(2):414–417. doi:10.1021/ma00168a031

    Article  CAS  Google Scholar 

  13. Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S (1994) Thermal and light control of the sol-gel phase-transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular-dichroism and electron-microscopic observation. J Am Chem Soc 116(15):6664–6676. doi:10.1021/ja00094a023

    Article  CAS  Google Scholar 

  14. Yan JL, Lin J, Sun YH, Jing P, He PL, Gao D, Fang Y (2010) Oligo(FcDC-co-CholDEA) with ferrocene in the main chain and cholesterol as a pendant group-preparation and unusual properties. J Phys Chem B 114(41):13116–13120. doi:10.1021/jp1032838

    Article  CAS  Google Scholar 

  15. Liu J, Yan JL, Yuan XW, Liu KQ, Peng JX, Fang Y (2008) A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation. J Colloid Interface Sci 318(2):397–404. doi:10.1016/j.jcis.2007.10.005

    Article  CAS  Google Scholar 

  16. Xu HQ, Song J, Tian T, Feng RX (2012) Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures. Soft Matter 8(12):3478–3486. doi:10.1039/c2sm07387k

    Article  CAS  Google Scholar 

  17. Perez L, Garcia-Martinez JC, Diez-Barra E, Atienzar P, Garcia H, Rodriguez-Lopez J, Langa F (2006) Electron transfer in nonpolar solvents in fullerodendrimers with peripheral ferrocene units. Chem Eur J 12(19):5149–5157. doi:10.1002/chem.200600207

    Article  CAS  Google Scholar 

  18. Chuang PH, Gu QR, Tseng YH, Chen CL (2014) Estimation of electron transfer properties of ferrocenyl-dicholesteryl-peptide in liquid and gel. J Colloid Interface Sci 417:310–316. doi:10.1016/j.jcis.2013.11.055

    Article  CAS  Google Scholar 

  19. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis-sets. Chem Phys Lett 197(4–5):499–505. doi:10.1016/0009-2614(92)85807-m

    Article  CAS  Google Scholar 

  20. Parr RG (1983) Density functional theory. Annu Rev Phys Chem 34:631–656. doi:10.1146/annurev.pc.34.100183.003215

    Article  CAS  Google Scholar 

  21. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114(25):10024–10035. doi:10.1021/ja00051a040

    Article  CAS  Google Scholar 

  22. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213. doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  23. Luo ZL, Jiang JW (2012) pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 162(1):185–193. doi:10.1016/j.jconrel.2012.06.027

    Article  CAS  Google Scholar 

  24. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH

  25. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960. doi:10.1021/jp003020w

    Article  CAS  Google Scholar 

  26. Allen MPT, D. J. (1987) Computer simulations of liquids. Oxford

  27. Lan YK, Huang CI (2008) A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. J Phys Chem B 112(47):14857–14862. doi:10.1021/jp806967x

    Article  CAS  Google Scholar 

  28. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5003. doi:10.1021/cr040084k

    Article  CAS  Google Scholar 

  29. Deng WQ, Goddard WA (2004) Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B 108(25):8614–8621. doi:10.1021/jp0495848

    Article  CAS  Google Scholar 

  30. Yang GC, Si YL, Geng Y, Yu F, Wu QX, Su ZM (2011) Charge transport and electronic properties of N-heteroquinones: quadruple weak hydrogen bonds and strong pi-pi stacking interactions. Theor Chem Accounts 128(2):257–264. doi:10.1007/s00214-010-0841-4

    Article  CAS  Google Scholar 

  31. Izutsu K (2003) Electrochemistry in nonaqueous solutions. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600655

Download references

Acknowledgments

The authors would like to thank the National Science Council, Taiwan, Republic of China for financially supporting this research under Contract (NSC 101-2113-M-110-009-MY3)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Lung Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, PH., Tseng, YH., Gu, Q. et al. Phase behavior and electron transfer properties of ferrocenyl cholesteryl N-formanidoformamide gelator: a computational study. Colloid Polym Sci 293, 2113–2119 (2015). https://doi.org/10.1007/s00396-015-3604-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3604-x

Keywords

Navigation