Skip to main content
Log in

Miniemulsion-based assembly of iron oxide nanoparticles and synthesis of magnetic polymer nanospheres

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A facile method to synthesize core-shell iron oxide/polymer nanospheres has been developed. Oleic acid-modified iron oxide nanoparticles were first prepared by the coprecipitation method. The iron oxide nanoparticles were then assembled into colloidal magnetic nanoparticle clusters (MNCs) by a miniemulsion-based assembly approach. The size of the MNCs can be tuned from about 50 nm to about 93 nm by rationally designing the experimental conditions. Magnetic iron oxide/poly(methyl methacrylate-co-divinylbenzene) (P(MMA-co-DVB)) nanospheres with well-defined core-shell structure and uniform size were finally prepared by seeded emulsion polymerization with the MNCs as the seeds. By the same procedure, core-shell iron oxide/poly(styrene-co-divinylbenzene) (P(St-co-DVB)) nanospheres were also successfully fabricated, demonstrating the versatility of the preparation method. The prepared composite nanospheres have uniform size, high saturation magnetization, and easily functionalized surface, promising for further biomedical applications and liquid phase catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang YT, Ma WF, Li D, Yu M, Guo J, Wang CC (2014) Benzoboroxole-functionalized magnetic core/shell microspheres for highly specific enrichment of glycoproteins under physiological conditions. Small 10:1379–1386

    Article  CAS  Google Scholar 

  2. An MY, Cui JB, Wang LY (2014) Magnetic recyclable nanocomposite catalysis with good dispersibility and high catalytic activity. J Phys Chem C 118:3062–3068

    Article  CAS  Google Scholar 

  3. Fang FF, Choi HJ, Choi WS (2010) Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. Colloid Polym Sci 288:359–363

    Article  CAS  Google Scholar 

  4. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253

    Article  CAS  Google Scholar 

  5. Guo J, Yang WL, Wang CC (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25:5196–5214

    Article  CAS  Google Scholar 

  6. Xu S, Liu J, Li D, Wang LM, Guo J, Wang CC, Chen CY (2014) Fe-salphen complexes from intracellular pH-triggered degradation of Fe3O4@salphen-InIII CPPs for selectively killing cancer cells. Biomaterials 35:1676–1685

    Article  CAS  Google Scholar 

  7. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189

    Article  CAS  Google Scholar 

  8. Jaiswal MK, Mehta S, Banerjee R, Bahadur D (2012) A comparative study on thermoresponsive magnetic nanohydrogels: role of surface-engineered magnetic nanoparticles. Colloid Polym Sci 290:607–617

    Article  CAS  Google Scholar 

  9. Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161

    Article  CAS  Google Scholar 

  10. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  11. Park SJ, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122:8581–8582

    Article  CAS  Google Scholar 

  12. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  13. Jana NR, Chen YF, Peng XG (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  14. Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Prog Colloid Polym Sci 100:212–216

    Article  CAS  Google Scholar 

  15. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  16. Liu C, Zou BS, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104:1141–1145

    Article  CAS  Google Scholar 

  17. Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  18. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  CAS  Google Scholar 

  19. Ge JP, Hu YX, Biasini M, Beyermann WP, Yin YD (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342–4345

    Article  CAS  Google Scholar 

  20. Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD (2007) A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed 46:6650–6653

    Article  CAS  Google Scholar 

  21. Zhuang JQ, Wu HM, Yang YA, Cao YC (2007) Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc 129:14166–14167

    Article  CAS  Google Scholar 

  22. Bizdoaca EL, Spasova M, Farle M, Hilgendorff M, Caruso F (2002) Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. J Magn Magn Mater 240:44–46

    Article  CAS  Google Scholar 

  23. Braconnot S, Eissa MM, Elaissari A (2013) Morphology control of magnetic latex particles prepared from oil in water ferrofluid emulsion. Colloid Polym Sci 291:193–203

    Article  CAS  Google Scholar 

  24. Cui LL, Xu H, He P, Sumitomo K, Yamaguchi Y, Gu HC (2007) Developing a hybrid emulsion polymerization system to synthesize Fe3O4/polystyrene latexes with narrow size distribution and high magnetite content. J Polym Sci Part A: Polym Chem 45:5285–5295

    Article  CAS  Google Scholar 

  25. Wang Q, Guan YP, Liu X, Ren XF, Yang MZ (2012) High-capacity adsorption of hexavalent chromium from aqueous solution using magnetic microspheres by surface dendrimer graft modification. J Colloid Interface Sci 375:160–166

    Article  CAS  Google Scholar 

  26. Horák D, Trchová M, Beneš MJ, Veverka M, Pollert E (2010) Monodisperse magnetic composite poly(glycidyl methacrylate)/La0.75Sr0.25MnO3 microspheres by the dispersion polymerization. Polymer 51:3116–3122

    Article  Google Scholar 

  27. Ma WF, Wu KY, Tang J, Li D, Wei C, Guo J, Wang SL, Wang CC (2012) Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin. J Mater Chem 22:15206–15214

    Article  CAS  Google Scholar 

  28. Xu H, Cui LL, Tong NH, Gu HC (2006) Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J Am Chem Soc 128:15582–15583

    Article  CAS  Google Scholar 

  29. Guan NN, Liu C, Sun DJ, Xu J (2009) A facile method to synthesize caboxyl-functionalized magnetic polystyrene nanospheres. Colloids Surf A 335:174–180

    Article  CAS  Google Scholar 

  30. Xu S, Ma WF, You LJ, Li JM, Guo J, Hu JJ, Wang CC (2012) Toward designer magnetite/polystyrene colloidal composite microspheres with controllable nanostructures and desirable surface functionalities. Langmuir 28:3271–3278

    Article  CAS  Google Scholar 

  31. Gong T, Yang D, Hu JH, Yang WL, Wang CC, Lu JQ (2009) Preparation of monodispersed hybrid nanospheres with high magnetite content from uniform Fe3O4 clusters. Colloids Surf A 339:232–239

    Article  CAS  Google Scholar 

  32. Zhang F, Wang CC (2008) Fabrication of one-dimensional iron oxide/silica nanostructures with high magnetic sensitivity by dipole-directed self-assembly. J Phys Chem C 112:15151–15156

    Article  CAS  Google Scholar 

  33. Shen LF, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  CAS  Google Scholar 

  34. Wang PC, Chiu WY, Lee CF, Young TH (2004) Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: nucleation mechanism and morphology. J Polym Sci Part A: Polym Chem 42:5695–5705

    Article  CAS  Google Scholar 

  35. Wang GS, Chang Y, Wang L, Wei ZY, Kang JY, Sang L, Dong XF, Chen GY, Wang H, Qi M (2013) Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent. J Magn Magn Mater 340:57–60

    Article  CAS  Google Scholar 

  36. Namouchi F, Smaoui H, Fourati N, Zerrouki C, Guermazi H, Bonnet JJ (2009) Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectroscopies. J Alloys Compd 469:197–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program of China (No. 2013BAC13B01), National Nature Science Foundation of China (No. 11204266, 21276220), and Nature Science Foundation of Jiangsu Province (No. BK2012676, BK20141262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yu, S., Hou, G. et al. Miniemulsion-based assembly of iron oxide nanoparticles and synthesis of magnetic polymer nanospheres. Colloid Polym Sci 293, 1893–1902 (2015). https://doi.org/10.1007/s00396-015-3585-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3585-9

Keywords

Navigation