Advertisement

Colloid and Polymer Science

, Volume 293, Issue 6, pp 1749–1757 | Cite as

Study of the effect of isotacticity on some physical properties of poly(N-isopropylacrylamide)

  • Chandra Sekhar Biswas
  • Kheyanath Mitra
  • Shikha Singh
  • Kalyan Ramesh
  • Nira Misra
  • Biswajit Maiti
  • Amiya Kumar Panda
  • Pralay Maiti
  • Masami Kamigaito
  • Yoshio Okamoto
  • Biswajit RayEmail author
Original Contribution

Abstract

Some physical properties of high molecular weight linear poly(N-isopropylacrylamide)s (PNIPAM) having different isotacticities (m, meso dyad = 47, 62, 68, 81, and 88 %) have been studied. The solubility of these polymers in different solvents varied with their isotacticity. Thermal degradation of higher isotactic polymer started slightly earlier. Cloud point of these polymers in water gradually decreased with increase in m up to 68 %. Surface tension of these polymers in N,N-dimethylformamide (DMF) was slightly lower than DMF and almost independent of their isotacticity in the temperature range of 20–60 °C. But it decreased linearly with the increase in temperature. Moreover, for all polymers, it decreased very slightly with the increase in their concentrations in the range of 0.001–0.01 % (w/v). Viscosity of these polymers in DMF increased with (i) the increase in the concentration range of 1–5 % (w/v), (ii) the increase in their m values, and (iii) the decrease in the temperature in the range of 20–60 oC.

Keywords

Isotactic PNIPAM Solubility Thermogravimetry Powder XRD Cloud point Surface tension Viscosity 

Notes

Acknowledgments

The CSB and BR gratefully acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR), Government of India, through research grant no. 02(0002)/11/EMR-II.

References

  1. 1.
    Hirokawa Y, Tanaka T (1984) J Chem Phys 81:6379–6380CrossRefGoogle Scholar
  2. 2.
    Winnik FM, Ringsdorf H, Venzmer J (1990) Macromolecules 23:2415–2416CrossRefGoogle Scholar
  3. 3.
    Schild HG, Muthukumar M, Tirrell DA (1991) Macromolecules 24:948–952CrossRefGoogle Scholar
  4. 4.
    Nandi AK, Sen UK, Bhattacharya SN, Mandal BM (1983) Eur Polym J 19:283–286CrossRefGoogle Scholar
  5. 5.
    Hofman CH, Plamper FA, Scherzinger C, Hietala S, Richtering W (2013) Macromolecules 46:523–532CrossRefGoogle Scholar
  6. 6.
    Osada Y, Okuzaki H, Hori H (1992) Nature 355:242–244CrossRefGoogle Scholar
  7. 7.
    Zhang XZ, Lewis PJ, Chu CC (2005) Biomaterials 26:3299–3309CrossRefGoogle Scholar
  8. 8.
    Satarkar NS, Hilt JZ (2008) J Control Release 130:246–251CrossRefGoogle Scholar
  9. 9.
    Huanga G, Gaoa J, Hua Z, John JVS, Ponder B, Moro D (2004) J Control Release 94:303–311CrossRefGoogle Scholar
  10. 10.
    Hamamoto H, Kudoh M, Takahashi H, Ikegami S (2006) Org Lett 8:4015–4018CrossRefGoogle Scholar
  11. 11.
    Yamato M, Konno C, Utsumi M, Kikuci A, Okano T (2002) Biomaterials 23:561–567CrossRefGoogle Scholar
  12. 12.
    Heskins M, Guillet JEJ (1968) Macromol Sci Chem A2:1441–1455CrossRefGoogle Scholar
  13. 13.
    Oscar C, Marino G, Luigi T (1979) Makromol Chem 180:969–973CrossRefGoogle Scholar
  14. 14.
    Fujishige S, Kubota K, Ando I (1989) J Phys Chem 93:3311–3313CrossRefGoogle Scholar
  15. 15.
    Kenji K, Shouei F, Isao A (1990) Polym J 22:15–20CrossRefGoogle Scholar
  16. 16.
    Tong Z, Zeng F, Zheng X, Sato T (1999) Macromolecules 32:4488–4490CrossRefGoogle Scholar
  17. 17.
    Yang H, Yan X, Cheng R (2000) J Polym Sci B Polym Phys 38:1188–1192CrossRefGoogle Scholar
  18. 18.
    de Azevedo RG, Rebelo LPN, Ramos AM, Szydlowski J, de Sousa HC, Klein J (2001) Fluid Phase Equilib 185:189–198CrossRefGoogle Scholar
  19. 19.
    Pelton RH (2010) J Colloid Interface Sci 348:673–674CrossRefGoogle Scholar
  20. 20.
    Zeng F, Zheng X, Tong Z (1998) Polymer 39:1249–1251CrossRefGoogle Scholar
  21. 21.
    Stieger M, Richtering W (2003) Macromolecules 36:8811–8818CrossRefGoogle Scholar
  22. 22.
    Badiger MV, Wolf BA (2003) Macromol Chem Phys 204:600–606CrossRefGoogle Scholar
  23. 23.
    Durand A, Hourdet D (1999) Polymer 40:4941–4951CrossRefGoogle Scholar
  24. 24.
    Durand A, Hourdet D, Lafuma F (2000) J Phys Chem B 104:9371–9377CrossRefGoogle Scholar
  25. 25.
    Lin HH, Cheng YL (2001) Macromolecules 34:3710–3715CrossRefGoogle Scholar
  26. 26.
    Kujawa P, Watanabe H, Tanaka F, Winnik FM (2005) Eur Phys J E 17:129–137CrossRefGoogle Scholar
  27. 27.
    Isobe Y, Fujioka D, Habaue S, Okamoto Y (2001) J Am Chem Soc 123:7180–7181CrossRefGoogle Scholar
  28. 28.
    Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M (2003) Macromolecules 36:543–545CrossRefGoogle Scholar
  29. 29.
    Ray B, Isobe Y, Matsumoto K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M (2004) Macromolecules 37:1702–1710CrossRefGoogle Scholar
  30. 30.
    Ito M, Ishizone T (2006) J Polym Sci A Polym Chem 44:4832–4845CrossRefGoogle Scholar
  31. 31.
    Hirano T, Miki H, Seno M, Sato T (2005) Polymer 46:5501–5505CrossRefGoogle Scholar
  32. 32.
    Hirano T, Okumura Y, Kitajima H, Seno M, Sato T (2006) J Polym Sci A Polym Chem 44:4450–4460CrossRefGoogle Scholar
  33. 33.
    Ray B, Okamoto Y, Kamigaito M, Sawamoto M, Seno K, Kanaoka S, Aoshima S (2005) Polym J 37:234–237CrossRefGoogle Scholar
  34. 34.
    Katsumoto Y, Kubosaki N (2008) Macromolecules 41:5955–5956CrossRefGoogle Scholar
  35. 35.
    Kobayashi M, Ishizone T, Nakahama S (2000) J Polym Sci A Polym Chem 38:4677–4685CrossRefGoogle Scholar
  36. 36.
    Hirano T, Nakamura K, Kamikubo T, Ishii S, Tani K, Mori T, Sato T (2008) J Polym Sci A Polym Chem 46:4575CrossRefGoogle Scholar
  37. 37.
    Biswas CS, Patel VK, Vishwakarma NK, Mishra AK, Saha S, Ray B (2010) Langmuir 26:6775–6782CrossRefGoogle Scholar
  38. 38.
    Biswas CS, Vishwakarma NK, Patel VK, Mishra AK, Saha S, Ray B (2012) Langmuir 28:7014–7022CrossRefGoogle Scholar
  39. 39.
    Nuopponen M, Kalliomäki K, Laukkanen A, Hietala S, Tenhu H (2008) J Polym Sci A Polym Chem 46:38–46CrossRefGoogle Scholar
  40. 40.
    Biswas CS, Patel VK, Vishwakarma NK, Tiwari VK, Maiti B, Maiti P, Kamigaito M, Okamoto Y, Ray B (2011) Macromolecules 44:5822–5824CrossRefGoogle Scholar
  41. 41.
    Haraguchi K, Xu Y, Li G (2011) Macromol Symp 306:33–48CrossRefGoogle Scholar
  42. 42.
    Anya JH, Andrew MH, Alexander FR (2011) J Colloid Interface Sci 357:300–307CrossRefGoogle Scholar
  43. 43.
    Tan BH, Pelton RH, Tam KC (2010) Polymer 51:3238–3243CrossRefGoogle Scholar
  44. 44.
    Chen JP, Cheng TH (2009) Polymer 50:107–116CrossRefGoogle Scholar
  45. 45.
    Monteux C, Mangeret R, Laibe G, Freyssingeas E, Bergeron V, Fuller G (2006) Macromolecules 39:3408–3414CrossRefGoogle Scholar
  46. 46.
    Milewska A, Szydlowski J, Rebelo LPN (2003) J Polym Sci B Polym Phys 41:1219–1233CrossRefGoogle Scholar
  47. 47.
    Hietala H, Nuopponen M, Kalliomäki K, Tenhu H (2008) Macromolecules 41:2627–2631CrossRefGoogle Scholar
  48. 48.
    Monteux C, Marliere C, Paris P, Pantoustier N, Sanson N, Perrin P (2010) Langmuir 26:13839–13846CrossRefGoogle Scholar
  49. 49.
    Kelarakis A, Tang T, Havredaki V, Viras K, Hamley IW (2008) J Colloid Interface Sci 320:70–73CrossRefGoogle Scholar
  50. 50.
    Zhang J, Pelton R (1996) Langmuir 12:2611–2612CrossRefGoogle Scholar
  51. 51.
    Zhang J, Pelton R (1999) J Polym Sci A Polym Chem 37:2137–2143CrossRefGoogle Scholar
  52. 52.
    Noskov BA, Akentiev AV, Bilibin AY, Grigoriev DO, Loglio G, Zorin IM, Miller R (2004) Langmuir 20:9669–9676CrossRefGoogle Scholar
  53. 53.
    Kawaguchi M, Hirose Y-i, Kato T (1996) Langmuir 12:3523–3526CrossRefGoogle Scholar
  54. 54.
    Niskanen J, Wu C, Ostrowski M, Fuller GG, Tenhu H, Hietala S (2012) Langmuir 28:14792–14798CrossRefGoogle Scholar
  55. 55.
    Koyama M, Hirano T, Ohno K, Katsumoto K (2008) J Phys Chem B 112:10854–10860CrossRefGoogle Scholar
  56. 56.
    Nuopponen M, Kalliomäki K, Aseyev V, Tenhu H (2008) Macromolecules 41:4881–4886CrossRefGoogle Scholar
  57. 57.
    Nakano S, Ogiso T, Kita R, Shinyashiki N, Yagihara S (2011) J Chem Phys 135:114903, 1-6CrossRefGoogle Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB et al (2010) GAUSSIAN 09, Revision C.01. Gaussian, Inc, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chandra Sekhar Biswas
    • 1
  • Kheyanath Mitra
    • 1
  • Shikha Singh
    • 1
  • Kalyan Ramesh
    • 2
  • Nira Misra
    • 2
  • Biswajit Maiti
    • 1
  • Amiya Kumar Panda
    • 3
  • Pralay Maiti
    • 4
  • Masami Kamigaito
    • 5
  • Yoshio Okamoto
    • 6
  • Biswajit Ray
    • 1
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Biomedical EngineeringIndian Institute of Technology - Banaras Hindu UniversityVaranasiIndia
  3. 3.Department of ChemistryUniversity of North BengalDarjeelingIndia
  4. 4.School of Material Science and TechnologyIndian Institute of Technology - Banaras Hindu UniversityVaranasiIndia
  5. 5.Department of Applied Chemistry, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  6. 6.Nagoya UniversityNagoyaJapan

Personalised recommendations