Skip to main content
Log in

Organo-modified mesoporous carbon FDU-15 as new nanofiller for the preparation of nanocomposite materials based on nylon-6

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Porous carbon materials have been contributing to many areas of modern science and technology owing to their high specific surface area, large pore volume, and good electric and thermal conductivity, as well as mechanical and chemical stability. In this study, mesoporous carbon FDU-15 was modified with 3-mercaptopropyl-trimethoxysilane by ultrasonic irradiation. The X-ray diffraction (XRD) patterns show that mesoporous FDU-15 has a highly ordered hexagonal mesostructure and transmission electron microscopy (TEM) images verify the presence of large pores and a relatively ordered mesostructure for the functionalized materials. Different amount of modified FDU-15 (1, 2 and 3 wt. %) were used as reinforcing agent for the preparation of nylon-6/FDU nanocomposites. The obtained hybrid materials were characterized by Fourier transform-infrared spectroscopy, XRD, field emission-scanning electron microscopy, and TEM techniques. Thermogravimetric analysis data show that the onset of decomposition temperature of the nanocomposites was higher than that of pristine nylon-6, shifting toward higher temperatures as the amount of modified-FDU was increased. TEM images show well-ordered hexagonal arrays of mesopores and the average distances between neighboring pores is around 3-5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally remendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  Google Scholar 

  2. Oh M, Mirkin CA (2005) Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438:651–654

    Article  CAS  Google Scholar 

  3. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Article  CAS  Google Scholar 

  4. Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  5. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of Stober method for the preparation of monodisperse resorcinol formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  CAS  Google Scholar 

  6. Zhang FQ, Meng Y, Gu D, Yu C, Tu B, Zhao D (2005) A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J Am Chem Soc 127:13508–13509

    Article  CAS  Google Scholar 

  7. Meng Y, Gu D, Zang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44:7053–7059

    Article  CAS  Google Scholar 

  8. Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798

    Google Scholar 

  9. Mallakpour S, Dinari M, Mohammadnezhad G (2014) Ultrasonic assisted organo-modification of mesoporous SBA-15 with N-trimellitylimido-L-methionine and preparation of the poly(amide–imide)/SBA nanocomposites. Prog Org Coat 78:300–306

    Article  Google Scholar 

  10. Yu C Z, Yu Y H, Zhao D Y (2000) Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem Commun 575–476

  11. Kipkemboi P, Fogden A, Alfredsson V, Flodstrom K (2001) Copolymers as templates in mesoporous silica formation: structural dependence on polymer chain length and synthesis temperature. Langmuir 17:5398–5402

    Article  CAS  Google Scholar 

  12. Yu T, Zhang H, Yan X, Chen Z, Zou X, Oleynikov P, Zhao D (2006) Pore structures of ordered large cage-type mesoporous silica FDU-12s. J Phys Chem B 110:21467–21472

    Article  CAS  Google Scholar 

  13. Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26:10277–10286

    Article  CAS  Google Scholar 

  14. Chen X, Farber M, Gao Y, Kulaots I, Suuberg EM, Hurt RH (2003) Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon 41:1489–1500

    Article  CAS  Google Scholar 

  15. Li Z, Cul DGD, Yan W, Liang C, Dai S (2004) Fluorinated carbon with ordered mesoporous structure. J Am Chem Soc 126:12782–12783

    Article  CAS  Google Scholar 

  16. Li Z, Yan W, Dai S (2005) Surface functionalization of ordered mesoporous carbons-a comparative study. Langmuir 21:11999–12006

    Article  CAS  Google Scholar 

  17. Li Z, Dai S (2005) Surface functionalization and pore size manipulation for carbons of ordered structure. Chem Mater 17:1717–1721

    Article  CAS  Google Scholar 

  18. Choi M, Ryoo R (2007) Mesoporous carbons with KOH activated framework and their hydrogen adsorption. J Mater Chem 17:4204–4209

    Article  CAS  Google Scholar 

  19. Xing R, Liu Y, Wang Y, Chen L, Wu H, Jiang Y, He M, Wu P (2007) Active solid acid catalysts prepared by sulfonation of carbonization-controlled mesoporous carbon materials. Microporous Mesoporous Mater 105:41–48

    Article  CAS  Google Scholar 

  20. Huang S, Toh CL, Yang L, Phua S, Zhou R, Dasari A, Lu X (2014) Reinforcing nylon 6 via surface-initiated anionic ring-opening polymerization from stacked-cup carbon nanofibers. Compos Sci Technol 93:30–37

    Article  CAS  Google Scholar 

  21. Liu F, Lu Q, Jiao X, Chen D (2014) Fabrication of nylon-6/POMs nanofibrous membranes and the degradation of mustard stimulant research. RSC Adv 4:41271–41276

    Article  CAS  Google Scholar 

  22. Song S, Chen Y, Su Z, Quan C, Tan VBC (2014) Multiscale modeling of damage progression in nylon 6/clay nanocomposites. Compos Sci Technol 100:189–197

    Article  CAS  Google Scholar 

  23. Liu L, Qi Z, Zhu X (1999) Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci 71:1133–1138

    Article  CAS  Google Scholar 

  24. Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940

    Article  CAS  Google Scholar 

  25. Zhang L, Xiong Y, Ou E, Chen Z, Xiong Y, Xu W (2011) Preparation and properties of nylon 6/carboxylic silica nanocomposites via in situ polymerization. J Appl Polym Sci 122:1316–1324

    Article  CAS  Google Scholar 

  26. Dinari M, Mallakpour S, Mohammadnezhad G (2015) Organo-modification of mesoporous SBA-15 with chiral diacid and its utilization for the preparation of L-phenylalanine based poly(amide-imide) nanocomposites. Polym Plast Technol Eng. doi:10.1080/03602559.2014.961085

    Google Scholar 

  27. Ji X, Eric Hampsey J, Hu Q, He J, Yang Z, Lu Y (2003) Mesoporous silica-reinforced polymer nanocomposites. Chem Mater 15:3656–3662

    Article  CAS  Google Scholar 

  28. Lee T, Park SS, Jung Y, Han S, Han D, Kim I, Ha CS (2009) Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly(amic acid) ammonium salt. Eur Polym J 45:19–29

    Article  CAS  Google Scholar 

  29. Suzuki N, Kiba S, Kamachi Y, Miyamoto N, Yamauchi Y (2011) Mesoporous silica as smart inorganic filler: preparation of robust silicone rubber with low thermal expansion property. J Mater Chem 21:5338–5344

    Article  CAS  Google Scholar 

  30. Zhang F, Meng Y, Gu D, Yan Y, Chen Z, Tu B, Zhao D (2006) An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem Mater 18:5279–5288

    Article  CAS  Google Scholar 

  31. van Zyl JWE, García M, Schrauwen BAG, Kooi BJ, De Hosson JM, Verweij H (2002) Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macromol Mater Eng 287:106–110

    Article  Google Scholar 

  32. Yang F, Ou Y, Yu ZZ (1998) Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69:355–361

    Article  CAS  Google Scholar 

  33. Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33:1509–1515

    Article  CAS  Google Scholar 

  34. Naffakh M, Marco C, Gomez MA, Jiménez I (2011) Novel melt-processable nylon-6/inorganic fullerene-like WS2 nanocomposites for critical applications. Mater Chem Phys 129:641–648

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Research Affairs Division of Isfahan University of Technology (IUT), Iran Nanotechnology Initiative Council (INIC), and National Elite Foundation (NEF) of Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Dinari or Gholamhossein Mohammadnezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinari, M., Mohammadnezhad, G. & Nabiyan, A. Organo-modified mesoporous carbon FDU-15 as new nanofiller for the preparation of nanocomposite materials based on nylon-6. Colloid Polym Sci 293, 1569–1575 (2015). https://doi.org/10.1007/s00396-015-3556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3556-1

Keywords

Navigation