Skip to main content
Log in

Zwitterionic light-responsive polymeric micelles for controlled drug delivery

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Novel amphiphilic light-responsive block copolymer spiropyran-poly(2-methacryloyloxyethyl phosphorylcholine) (SP-PMPC) was reported and used as smart drug nanocarriers. SP-PMPC was easily synthesized via atom transfer radical polymerization (ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) using 2-bromo-2-methylpropanoate-ethyl-3′,3′-dimethyl-6-nitrospiro (2H-1-benzopyran-2,2′-indoline) (SP-Br) as initiator. SP-PMPC can self-assemble to micelles with relatively low critical micelle concentration (CMC) value (0.037 mg mL−1). Because of the reversible photochemical isomerization of hydrophobic spiropyran (SP) to hydrophilic merocyanine (MC), the self-assembly and disassembly of SP-PMPC micelles can be well controlled by an external light source, which was proved by ultraviolet-visible light (UV–vis) spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The hydrophobic anticancer drug doxorubicin (DOX) can be encapsulated into micelles. In vitro drug release studies showed that the release of DOX was accelerated in the presence of UV irradiation (λ = 365 nm) when compared to similar systems without UV irradiation treatment. The SP-PMPC micelles exhibited superior biocompatibility as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay owing to the stealth phosphorylcholine outer shell. Moreover, the DOX-loaded SP-PMPC micelles under UV irradiation exhibited better anticancer activity than that of the nonirradiated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tamboli V, Mishra GP, Mitra AK (2013) Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA)-based nanoparticles for controlled drug delivery: effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym Sci 291:1235–1245

    Article  CAS  Google Scholar 

  2. Jin Q, Cai TJ, Han HJ, Wang HB, Wang Y, Ji J (2014) Light and pH dual-degradable triblock copolymer micelles for controlled intracellular drug release. Macromol Rapid Commun 35:1372–1378

    Article  CAS  Google Scholar 

  3. Schulz A, Jaksch S, Schubel R, Wegener E, Di Z, Han Y, Meister A, Kressler J, Kabanov AV, Luxenhofer R, Papadakis CM, Jordan R (2014) Drug-induced morphology switch in drug delivery systems based on poly(2-oxazoline)s. ACS Nano 8:2686–2696

    Article  CAS  Google Scholar 

  4. Alvarez-Lorenzo C, Concheiro A (2014) Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 50:7743–7765

    Article  CAS  Google Scholar 

  5. Zhao LZ, Wu CL, Wang F, Ying AG, Xu CD, Liu SF (2014) Fabrication of biofunctional complex micelles with tunable structure for application in controlled drug release. Colloid Polym Sci 292:1675–1683

    Article  CAS  Google Scholar 

  6. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 11:991–1003

    Article  Google Scholar 

  7. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  8. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  9. Gupta S, Tyagi R, Parmar VS, Sharma SK, Haag R (2012) Polyether based amphiphiles for delivery of active components. Polymer 53:3053–3078

    Article  CAS  Google Scholar 

  10. Moon JR, Kim MW, Kim D, Jeong JH, Kim JH (2011) Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 289:63–71

    Article  CAS  Google Scholar 

  11. Panda JJ, Chauhan VS (2014) Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polym Chem 5:4418–4436

    Article  Google Scholar 

  12. Filippov SK, Chytil P, Konarev PV, Dyakonova M, Papadakis CM, Zhigunov A, Plestil J, Stepanek P, Etrych T, Ulbrich K, Svergun DI (2012) Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: detailed study of the inner structure of a highly efficient drug delivery system. Biomacromolecules 13:2594–2604

    Article  CAS  Google Scholar 

  13. Yan Y, Wang Y, Heath JK, Nice EC, Caruso F (2011) Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. Adv Mater 23:3916–3921

    Article  CAS  Google Scholar 

  14. Hrubý M, Koňák C, Ulbrich K (2007) Poly(ethylene oxide)-coated polyamide nanoparticles degradable by glutathione. Colloid Polym Sci 285:569–574

    Article  Google Scholar 

  15. Abulateefeh SR, Spain SG, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 11:1722–1734

    Article  CAS  Google Scholar 

  16. Luxenhofer R, Han YC, Schulz A, Tong J, He ZJ, Kabanov AV, Jordan R (2012) Macromol Rapid Commun 13:1613–1631

    Article  Google Scholar 

  17. Hu JM, Zhang GQ, Liu SY (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41:5933–5949

    Article  CAS  Google Scholar 

  18. Liu G, Liu W, Dong CM (2013) UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 4:3431–3443

    Article  CAS  Google Scholar 

  19. Jin Q, Cai TJ, Wang Y, Wang HB, Ji J (2014) Light-Responsive Polyion complex micelles with switchable surface charge for efficient protein delivery. ACS Macro Lett 3:679–683

    Article  CAS  Google Scholar 

  20. Gohy JF, Zhao Y (2013) Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev 42:7117–7129

    Article  CAS  Google Scholar 

  21. Zhao H, Sterner ES, Coughlin EB, Theato P (2012) o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45:1723–1736

    Article  CAS  Google Scholar 

  22. Jin Q, Luy C, Ji J, Agarwal S (2012) Design and proof of reversible micelle-to-vesicle multistimuli-responsive morphological regulations. J Polym Sci A Polym Chem 50:451–457

    Article  CAS  Google Scholar 

  23. Han DH, Tong X, Zhao Y (2011) Fast photodegradable block copolymer micelles for burst release. Macromolecules 44:437–439

    Article  CAS  Google Scholar 

  24. Jin Q, Liu GY, Ji J (2010) Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur Polym J 46:2120–2128

    Article  CAS  Google Scholar 

  25. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  Google Scholar 

  26. Li WY, Wang YX, Chen LN, Huang ZX, Hu QL, Ji J (2012) Light-regulated host–guest interaction as a new strategy for intracellular PEG-detachable polyplexes to facilitate nuclear entry. Chem Commun 48:10126–10128

    Article  CAS  Google Scholar 

  27. Jiang JQ, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291

    Article  CAS  Google Scholar 

  28. Zhao Y (2009) Photocontrollable block copolymer micelles: what can we control? J Mater Chem 19:4887–4895

    Article  CAS  Google Scholar 

  29. Jin Q, Mitschang F, Agarwal S (2011) Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules 12:3684–3691

    Article  CAS  Google Scholar 

  30. Meng LL, Huang W, Wang DL, Huang XH, Zhu XY, Yan DY (2013) Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules 14:2601–2610

    Article  CAS  Google Scholar 

  31. Jin Q, Wang Y, Cai TJ, Wang HB, Ji J (2014) Bioinspired photo-degradable amphiphilic hyperbranched poly(amino ester)s: facile synthesis and intracellular drug delivery. Polymer 55:4641–4650

    Article  CAS  Google Scholar 

  32. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754

    Article  CAS  Google Scholar 

  33. Lee H, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed 46:2453–2457

    Article  CAS  Google Scholar 

  34. Jin Q, Liu GY, Ji J (2010) Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J Polym Sci A Polym Chem 48:2855–2861

    Article  CAS  Google Scholar 

  35. Son S, Shin E, Kim B (2014) Light-responsive micelles of spiropyran initiated hyperbranched p[olyglycerol for smart drug delivery. Biomacromolecules 15:628–634

    Article  CAS  Google Scholar 

  36. Jin Q, Chen YJ, Wang Y, Ji J (2014) Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery. Colloids Surf B: Biointerfaces 124:80–86

    Article  CAS  Google Scholar 

  37. Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polym J 22:355–360

    Article  CAS  Google Scholar 

  38. Iwasaki Y, Ishihara K (2005) Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 381:534–546

    Article  CAS  Google Scholar 

  39. Wang HB, Wang Y, Chen YJ, Jin Q, Ji J (2014) A biomimic pH-sensitive polymeric prodrug based on polycarbonate for intracellular drug delivery. Polym Chem 5:854–861

    Article  CAS  Google Scholar 

  40. Wang HB, Xu FM, Wang Y, Liu XS, Jin Q, Ji J (2013) pH-responsive and biodegradable polymeric micelles based on poly(β-amino ester)-graft-phosphorylcholine for doxorubicin delivery. Polym Chem 4:3012–3019

    Article  CAS  Google Scholar 

  41. Raymo FM, Giordani S (2001) Signal processing at the molecular level. J Am Chem Soc 123:4651–4652

    Article  CAS  Google Scholar 

  42. Bonné TB, Lüdtke K, Jordan R, Štěpánek P, Papadakis CM (2004) Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym Sci 282:833–843

    Article  Google Scholar 

  43. Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail SA, Park CD (2007) Photo-, thermally, and pH-responsive microgels. Langmuir 23:224–229

    Article  CAS  Google Scholar 

  44. Cheng R, Wang X, Chen W, Meng F, Deng C, Liu H, Zhong Z (2012) Biodegradable poly(ε-caprolactone)-g-poly(2-hydroxyethyl methacrylate) graft copolymer micelles as superior nano-carriers for “smart” doxorubicin release. J Mater Chem 22:11730–11738

    Article  CAS  Google Scholar 

  45. Zhao J, Chen C, Li D, Liu X, Wang H, Jin Q, Ji J (2014) Biocompatible and biodegradable supramolecular assemblies formed with cucurbit[8]uril as a smart platform for reduction-triggered release of doxorubicin. Polym Chem 5:1843–1847

    Article  CAS  Google Scholar 

  46. Bansal A, Zhang Y (2014) Photocontrolled nanoparticle delivery systems for biomedical applications. Acc Chem Res 47:3052–3060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Special Social Commonweal Research Programs of the Scientific Institution of Ministry of Science and Technology (No.GY2012G-3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjian Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Zhou, M., Zhang, Q. et al. Zwitterionic light-responsive polymeric micelles for controlled drug delivery. Colloid Polym Sci 293, 1685–1694 (2015). https://doi.org/10.1007/s00396-015-3550-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3550-7

Keywords

Navigation