Advertisement

Colloid and Polymer Science

, Volume 293, Issue 6, pp 1647–1654 | Cite as

Rheological properties of emulsions formed by polymer solutions and modified by nanoparticles

  • S. O. Ilyin
  • V. G. Kulichikhin
  • A. Ya. Malkin
Original Contribution

Abstract

Rheological properties of concentrated oil-in-water emulsions containing dissolving polymers in both phases, partially playing a role of surfactants, were studied. Additionally, nanoparticles were added to the aqueous phase, and they had an influence on rheological behavior and emulsion stability. The main peculiarity of the objects is the superposition of viscoelastic properties related to the presence of polymers and to interface interactions. Emulsion viscoelasticity were characterized by three separate relaxation modes with very different relaxation times. They reflect relaxation processes of polymeric origin inside both phases, which are dilute polymer solutions, and elasticity of interface layers. Presence of nanoparticles strongly affects the rheological properties leading to the increase in the apparent viscosity, elastic modulus, and yield stress of emulsions.

Keywords

Concentrated emulsions Viscoelasticity Viscosity bifurcation Nanoparticles Interface layer 

Notes

Acknowledgment

The authors are grateful to the Russian Scientific Foundation (agreement #14-23-00003 of August 7, 2014) for financial support of the work.

References

  1. 1.
    Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41CrossRefGoogle Scholar
  2. 2.
    Binks BP, Whytby CP (2005) Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloid Surf A 253:105–115CrossRefGoogle Scholar
  3. 3.
    Binks BP, Desforges A, Duff DG (2007) Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23:1098–1106CrossRefGoogle Scholar
  4. 4.
    Wolf B, Lam S, Kirkland M, Frith WJ (2007) Shear thickening of an emulsion stabilized with hydrophilic silica particles. J Rheol 51:465–478CrossRefGoogle Scholar
  5. 5.
    Ashbya NP, Binks BP (2000) Pickering emulsions stabilised by Laponite clay particles. Phys Chem Chem Phys 2:5640–5646CrossRefGoogle Scholar
  6. 6.
    Melle S, Lask M, Fuller GG (2005) Pickering emulsions with controllable stability. Langmuir 21:2158–2162CrossRefGoogle Scholar
  7. 7.
    Wang J, Yang F, Tan J, Liu G, Xu J, Sun D (2010) Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles. Langmuir 26:5397–5404CrossRefGoogle Scholar
  8. 8.
    Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546CrossRefGoogle Scholar
  9. 9.
    Okada M, Maeda H, Fujii S, Nakamura Y, Furuzono T (2012) Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Langmuir 28:9405–9412CrossRefGoogle Scholar
  10. 10.
    Chang SA, Gray DG (1978) The surface tension of aqueous hydroxypropyl cellulose solutions. J Colloid Interface Sci 67:255–265CrossRefGoogle Scholar
  11. 11.
    Mezdoura S, Cuveliera G, Cashb MJ, Michon C (2007) Surface rheological properties of hydroxypropyl cellulose at air–water interface. Food Hydrocoll 21:776–781CrossRefGoogle Scholar
  12. 12.
    McNally EJ, Zografi G (1990) Spread and adsorbed monolayers of hydroxypropyl cellulose and hydroxyethyl cellulose at the air–water interface. J Colloid Interface Sci 138:61–68CrossRefGoogle Scholar
  13. 13.
    Yarusso DJ, Rivard RJ, Ma J (1999) Properties of polyisoprene-based pressure sensitive adhesives crosslinked by electron beam irradiation. J Adhesion 69:201–215CrossRefGoogle Scholar
  14. 14.
    Gibert FX, Marin G, Derail C, Allal A, Lechat J (2003) Rheological properties of hot melt pressure-sensitive adhesives based on styrene–isoprene copolymers. Part 1: a rheological model for [sis-si] formulations. J Adhes 79:825–852CrossRefGoogle Scholar
  15. 15.
    Sasaki M, Fujita K, Adachi M, Fujii S, Nakamura Y, Urahama Y (2008) The effect of tackifier on phase structure and peel adhesion of a triblock copolymer pressure-sensitive adhesive. Int J Adhes Adhes 28:372–381CrossRefGoogle Scholar
  16. 16.
    Borodulina T, Bermesheva E, Smirnova N, Ilyin S, Brantseva T, Antonov S (2014) Adhesive properties of liquid crystalline hydroxypropyl cellulose–propylene glycol blends. J Adhes Sci Technol 28:1629–1643CrossRefGoogle Scholar
  17. 17.
    Class JB, Chu SG (1985) The viscoelastic properties of rubber–resin blends. I. The effect of resin structure. J Appl Polym Sci 30:805–814CrossRefGoogle Scholar
  18. 18.
    Tobing S, Klein A, Sperling LH, Petrasko B (2001) Effect of network morphology on adhesive performance in emulsion blends of acrylic pressure sensitive adhesives. J Appl Polym Sci 81:2109–2117CrossRefGoogle Scholar
  19. 19.
    Leong YC, Lee LMS, Gan SN (2003) The viscoelastic properties of natural rubber pressure‐sensitive adhesive using acrylic resin as a tackifier. J Appl Polym Sci 88:2118–2123CrossRefGoogle Scholar
  20. 20.
    Tan HS, Pfister WR (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today 2:60–69CrossRefGoogle Scholar
  21. 21.
    Valenta C, Auner BG (2004) The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58:279–289CrossRefGoogle Scholar
  22. 22.
    Krägel J, Derkatch SR (2010) Interfacial shear rheology. Curr Opin Colloid Interface Sci 15:246–255CrossRefGoogle Scholar
  23. 23.
    Erni P, Fischer P, Windhab EJ, Kuznezov V, Stettin H, Läuger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instr 74:4916–4924CrossRefGoogle Scholar
  24. 24.
    Ilyin S, Kulichikhin V, Malkin A (2014) Characterization of material viscoelasticity at large deformations. Appl Rheol 24:13653Google Scholar
  25. 25.
    Møller PCF, Fall A, Bonn D (2009) Origin of apparent viscosity in yield stress fluids below yielding. EPL 87:38004CrossRefGoogle Scholar
  26. 26.
    Masalova I, Taylor M, Kharatiyan E, Malkin AY (2005) Rheopexy in highly concentrated emulsions. J Rheol 49:839–849CrossRefGoogle Scholar
  27. 27.
    Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46:257–266CrossRefGoogle Scholar
  28. 28.
    Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589CrossRefGoogle Scholar
  29. 29.
    Malkin A, Ilyin S, Semakov A, Kulichikhin V (2012) Viscoplasticity and stratified flow of colloid suspensions. Soft Matter 8:2607–2617CrossRefGoogle Scholar
  30. 30.
    Ilyin SO, Pupchenkov GS, Krasheninnikov AI, Kulichikhin VG, Malkin AY (2013) Rheology of aqueous poly (ethylene oxide) solutions reinforced with bentonite clay. Colloid J 75:267–273CrossRefGoogle Scholar
  31. 31.
    Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: mA master dynamic phase diagram. Phys Rev E 55:1668CrossRefGoogle Scholar
  32. 32.
    Britten MM, Callaghan TP (1997) Two-phase shear band structures at uniform stress. Phys Rev Lett 78:4930CrossRefGoogle Scholar
  33. 33.
    Salmon JB, Manneville S, Colin A (2003) Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys Rev E 68:051503CrossRefGoogle Scholar
  34. 34.
    Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300CrossRefGoogle Scholar
  35. 35.
    Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281CrossRefGoogle Scholar
  36. 36.
    Ilyin S, Roumyantseva T, Spiridonova V, Semakov A, Frenkin E, Malkin A, Kulichikhin V (2011) Gels of cysteine/Ag-based dilute colloid systems and their rheological properties. Soft Matter 7:9090–9103CrossRefGoogle Scholar
  37. 37.
    Derkach SR (2009) Rheology of emulsions. Adv Colloid Interface Sci 151:1–23CrossRefGoogle Scholar
  38. 38.
    Princen HM (1986) Osmotic pressure of foams and highly concentrated emulsions. I. Theoretical considerations. Langmuir 2:519–524CrossRefGoogle Scholar
  39. 39.
    Mason TG, Lacasse MD, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56:2150–3166CrossRefGoogle Scholar
  40. 40.
    Foudazi R, Masalova I, Malkin AY (2010) The role of interdroplet interaction in the physics of highly concentrated emulsions. Colloid J 72:74–92CrossRefGoogle Scholar
  41. 41.
    Kragel J, Derkatch SR (2009) Interfacial shear rheology—an overview of measuring techniques and their applications. In: Miller R, Liggieri L (eds) Interfacial rheology. Brill Publ, Leiden, pp 372–428CrossRefGoogle Scholar
  42. 42.
    Fainerman VB, Möbius D, Miller R (2001) Surfactants: chemistry, interfacial properties, applications. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • V. G. Kulichikhin
    • 1
  • A. Ya. Malkin
    • 1
  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations