Skip to main content
Log in

An induction current method for determining the critical micelle concentration and the polarity of surfactants

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel and simple method of determining both the critical micelle concentration (CMC) and polarities of ionic surfactants at the same time is presented in this paper. This method is based on the dependence of electrical potential at the liquid-air interface on the aggregation of the surfactant. When the measuring electrode contacts the liquid-air interface, the difference between the electrical potential of the electrode surface and the electrical potential of the liquid-air interface generates an electrical current through an electrical circuit. The dependences of the magnitudes of the measured signals on the concentrations of sodium dodecyl sulfate and hexadecyltrimethylammonium bromide were measured. The results show that the magnitude of the measured signal increases with the increasing surfactant concentration before it reaches to the CMC. The signal magnitude remains constant after the CMC. The value of CMC can be determined from the intersection point of the two lines before and after CMC. The CMC values calculated with this method are in good agreement with those reported in the reference papers. The experimental results also show that the directions of the signals generated by anionic and cationic surfactants are in opposite direction, which can be used to determine the polarities of the surfactants. The method described in this paper provides a simple and reliable tool to determine the CMC value and the polarity of ionic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah DO (ed) (1977) Improved oil recovery by surfactant and polymer flooding. Academic, New York

    Google Scholar 

  2. Armstrong DW (1985) Micelles in separations: practical and theoretical review. Sep Purif Methods 14:213–304

    Article  CAS  Google Scholar 

  3. Scamehorn JF, Harwell JH (1989) Surfactant-based separation processes. Dekker, New York, pp 55–90

    Google Scholar 

  4. Love LJC, Habarta JG, Dorsey JG (1984) The micelle-analytical chemistry interface. Anal Chem 56:1132A–1148A

    Article  CAS  Google Scholar 

  5. Davies DG, Bury CR (1930) The partial specific volume of potassium n-octoate in aqueous solution. J Chem Soc 2263–2267. doi:10.1039/JR9300002263

  6. Grindley J, Bury CR (1929) XCVII.—The densities of butyric acid–water mixtures. J Chem Soc (Resumed) 679–684. doi:10.1039/JR9290000679

  7. Cifuentes A, Bernal JL, Diez-Masa JC (1997) Determination of critical micelle concentration values using capillary electrophoresis instrumentation. Anal Chem 69:4271–4274

    Article  CAS  Google Scholar 

  8. Piera E, Erra P, Infante MR (1997) Analysis of cationic surfactants by capillary electrophoresis. J Chromatogr A 757:275–280

    Article  CAS  Google Scholar 

  9. Patist A, Bhagwat SS, Penfield KW (2000) On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg 3:53–58

    Article  CAS  Google Scholar 

  10. Mullerova M, Svab M, dos Santos MM (2007) Measurement of critical micellar concentrations of tensides in aqueous solutions. Chem Listy 101:509–514

    CAS  Google Scholar 

  11. Oremusova J, Greksakova O (2003) Determination of the critical micelle concentration, hydrodynamic micelle radius and experimental partition coefficient of (−)-N-dodecyl-N-methylephedrinium bromide. Tenside Surfactants Det 40:90–95

    CAS  Google Scholar 

  12. Baquerizo I, Ruiz MA, Holgado JA (2000) Measurement of dynamic surface tension to determine critical micellar concentration in lipophilic silicone surfactants. Farmaco 55:583–589

    Article  CAS  Google Scholar 

  13. Zhang S, Yu J, Wu J (2014) Micellization parameters of six gemini quaternary ammonium surfactants from measurements of conductivity and surface tension. J Chem Eng Data 59:2891–2900

    Article  CAS  Google Scholar 

  14. Zhang Q, Zhao Y, Sun D (2013) Study on micelle formation of three homologous surfactants in aqueous solution by surface tension, conductivity, and fluorescence measurements. J Dispers Sci Technol 34:1725–1732

    Article  CAS  Google Scholar 

  15. Mohamed DE, Negm NA, Mishrif MR (2013) Micellization and interfacial interaction behaviors of gemini cationic surfactants–CTAB mixed surfactant systems. J Surfactants Deterg 16:723–731

    Article  CAS  Google Scholar 

  16. Dai C, Du M, Zhao M (2013) Study of micelle formation by fluorocarbon surfactant N-(2-hydroxypropyl) perfluorooctane amide in aqueous solution. J Phys Chem B 117:9922–9928

    Article  CAS  Google Scholar 

  17. Khan IA, Anjum K, Koya PA (2014) Tensiometric and conductometric studies of the effect of polymers on the aggregation behavior of cationic amphiphilic drugs IMP and PMT. J Mol Liq 193:6–12

    Article  CAS  Google Scholar 

  18. Bielawska M, Chodzinska A, Janczuk B (2013) Determination of CTAB CMC in mixed water plus short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloid Surf A: Physicochem Eng Aspects 424:81–88

    Article  CAS  Google Scholar 

  19. De Moraes SL, Rezende MOO (2004) Determination of the critical micelle concentration of humic acids by spectroscopy and conductimetric measurements. Quim Nova 27:701–705

    Article  Google Scholar 

  20. Benito I, Garcia MA, Monge C (1997) Spectrophotometric and conductimetric determination of the critical micellar concentration of sodium dodecyl sulfate and cetyltrimethylammonium bromide micellar systems modified by alcohols and salts. Colloid Surf A: Physicochem Eng Aspects 125:221–224

    Article  CAS  Google Scholar 

  21. Geetha B, Mandal AB (1997) Determination of the critical micelle concentration of the methoxy polyethylene glycol based macromonomer and partition coefficient of a new electrochemical probe using a cyclic voltammetric technique. Langmuir 13:2410–2413

    Article  CAS  Google Scholar 

  22. Chang HC, Lin YY, Chern CS (1998) Determination of critical micelle concentration of macroemulsions and miniemulsions. Langmuir 14:6632–6638

    Article  CAS  Google Scholar 

  23. Pérez-Rodríguez M, Prieto G, Rega C (1998) A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 14:4422–4426

    Article  Google Scholar 

  24. Sifaoui H, Ługowska K, Domańska U (2007) Ammonium ionic liquid as modulator of the critical micelle concentration of ammonium surfactant at aqueous solution: conductimetric and dynamic light scattering (DLS) studies. J Colloid Interf Sci 314:643–650

    Article  CAS  Google Scholar 

  25. Racaud C, Serrano KG, Savall A (2010) Voltammetric determination of the critical micellar concentration of surfactants by using a boron doped diamond anode. J Appl Electrochem 40:1845–1851

    Article  CAS  Google Scholar 

  26. Frindi M, Michels B, Levy H, Zana R (1994) Alkanediyl-α, ω-bis (dimethylalkylammonium bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solution. Langmuir 10:1140–1145

    Article  CAS  Google Scholar 

  27. Topel Ö, Çakır BA, Budama L, Hoda N (2013) Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 177:40–43

    Article  CAS  Google Scholar 

  28. Mehreteab A, Chen B (1995) Fluorescence technique for the determination of low critical micelle concentrations. J Am Oil Chem Soc 72:49–52

    Article  CAS  Google Scholar 

  29. Zhang X, Jackson JK, Burt HM (1996) Determination of surfactant critical micelle concentration by a novel fluorescence depolarization technique. J Biochem Bioph Methods 31:145–150

    Article  CAS  Google Scholar 

  30. Wong JE, Duchscherer TM, Pietraru G, Cramb DT (1999) Novel fluorescence spectral deconvolution method for determination of critical micelle concentrations using the fluorescence probe PRODAN. Langmuir 15:6181–6186

    Article  CAS  Google Scholar 

  31. Ishino S, Asakawa T, Ohta A, MIYAGISHI S (2003) Fluorescence quenching of quinoline derivatives in a micelle system. J Oleo Sci 52:535–540

    Article  CAS  Google Scholar 

  32. Fayed TA (2004) Probing of micellar and biological systems using 2-(p-dimethy laminostyryl) benzoxazole: an intramolecular charge transfer fluorescent probe: an intramolecular charge transfer fluorescent probe. Colloid Surf A: Physicochem Eng Aspects 236:171–177

    Article  CAS  Google Scholar 

  33. Wintgens V, Amiel C (2004) New 4-amino-N-alkylphthalimides as fluorescence probes for β-cyclodextrin inclusion complexes and hydrophobic microdomains of amphiphilic systems. J Photochem Photobiol A 168:217–226

    Article  CAS  Google Scholar 

  34. Nakahara Y, Kida T, Nakatsuji Y, Akashi M (2005) New fluorescence method for the determination of the critical micelle concentration by photosensitive monoazacryptand derivatives. Langmuir 21:6688–6695

    Article  CAS  Google Scholar 

  35. Thévenot C, Grassl B, Bastiat G (2005) Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity. Colloid Surf A: Physicochem Eng Aspects 252:105–111

    Article  Google Scholar 

  36. Paillet S, Grassl B, Desbrières J (2009) Rapid and quantitative determination of critical micelle concentration by automatic continuous mixing and static light scattering. Anal Chim Acta 636:236–241

    Article  CAS  Google Scholar 

  37. Ghosh S, Krishnan A, Das PK (2003) Determination of critical micelle concentration by hyper-Rayleigh scattering. J Am Chem Soc 125:1602–1606

    Article  CAS  Google Scholar 

  38. Ferrara D, Yu WH, Freiser H (1991) Determination of the critical micelle concentration of neutral surfactants by means of a coated wire ion-selective electrode. Colloids Surf 59:113–118

    Article  CAS  Google Scholar 

  39. Tan CH, Huang ZJ, Huan XG (2010) Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing. Anal Biochem 401:144–147

    Article  CAS  Google Scholar 

  40. Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Problems associated with the treatment of conductivity-concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  41. Utsumi I, Harada K (1962) Studies on surface activation of medicinals. VII. Properties of pharmaceutical preparation of alkylsulfates. (2). Surface tension and critical micelle concentration. Yakugaku Zasshi 82:114–120

    CAS  Google Scholar 

  42. Cai L, Gochin M, Liu K (2011) A facile surfactant critical micelle concentration determination. Chem Commun 47:5527–5529

    Article  CAS  Google Scholar 

  43. Mukerjee P, Mysels KJ (1970) Critical micelle concentrations of aqueous surfactant system. National Bureau of Standards, Washington DC

    Google Scholar 

  44. J.W. Gibbs (ed) (1931) The collected works of J. W. Gibbs, vol. I. Longmans, Green, New York

  45. Song Y, Zhao K, Wang J, Wu X, Pan X, Sun Y, Li D (2014) An induced current method for measuring zeta potential of electrolyte solution-air interface. J Colloid Interface Sci 416:101–104

    Article  CAS  Google Scholar 

  46. Cho SH, Kim JY, Chun JH, Kim JD (2005) Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloid Surf A: Physicochem Eng Aspects 269:28–34

    Article  CAS  Google Scholar 

  47. Fuguet E, Ràfols C, Rosés M, Bosch E (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548:95–100

    Article  CAS  Google Scholar 

  48. Modaressi A, Sifaoui H, Grzesiak B, Solimando R (2007) CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductimetric studies. Colloid Surf A: Physicochem Eng Aspects 296:104–108

    Article  CAS  Google Scholar 

  49. Minatti E, Zanette D (1996) Salt effects on the interaction of poly (ethylene oxide) and sodium dodecyl sulfate measured by conductivity. Colloid Surf A: Physicochem Eng Aspects 113:237–246

    Article  CAS  Google Scholar 

  50. Rana D, Neale G, Hornof V (2002) Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate. Colloid Polym Sci 280:775–778

    Article  CAS  Google Scholar 

  51. Bi Z, Liao W, Qi L (2004) Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery. Appl Surf Sci 221:25–31

    Article  CAS  Google Scholar 

  52. Persson CM, Jonsson AP, Bergström M, Eriksson JC (2003) Testing the Gouy–Chapman theory by means of surface tension measurements for SDS–NaCl–H2O mixtures. J Colloid Interface Sci 267:151–154

    Article  CAS  Google Scholar 

  53. Aniansson EAG, Wall SN, Almgren M, Hoffmann H, Kielmann I, Ulbricht W, Tondre C (1976) Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J Phys Chem 80:905–922

    Article  CAS  Google Scholar 

  54. Fendler EJ, Fendler JH (1970) Micellar catalysis in organic reactions: Kinetic and mechanistic implications. Adv Phys Org Chem 8:271–406

    CAS  Google Scholar 

  55. Jacquier JC, Desbene PL (1995) Determination of critical micelle concentration by capillary electrophoresis. Theoretical approach and validation. J Chromatogr A 718:167–175

    Article  CAS  Google Scholar 

  56. Saitoh K, Kiyohara C, Suzuki N (1991) Mobilities of metal β-diketonato complexes in micellar electrokinetic chromatography. HRC J High Resolut Chromatogr 14:245–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support of the Fundamental Research Funds for the Central Universities (3132014336) and State Key Laboratory of Clean Energy Utilization Foundation to Yongxin Song and the Natural Sciences and Engineering Research Council of Canada through a research grant to D. Li. The University 111 project of China under Grant No. B08046 is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Sun, R., Zhao, K. et al. An induction current method for determining the critical micelle concentration and the polarity of surfactants. Colloid Polym Sci 293, 1525–1534 (2015). https://doi.org/10.1007/s00396-015-3536-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3536-5

Keywords

Navigation