Skip to main content
Log in

Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present research, excellent dispersion state of graphene in non-polar polymer of polypropylene is achieved via latex technology. A new effective method to reduce graphene oxide (GO) in the polypropylene (PP) latex/GO hybrid film by dipping into reducing agent can prevent the aggregating of graphene nanosheets. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) results indicate that the dispersion state of graphene became better as increasing the content of latex. It suggests that the PP latex particles act as separation agent for GO nanosheets. The yield strength of the as-prepared PP/graphene nanocomposites first increases and then decreases with the content of latex increasing; however, the conductivity of the nanocomposites increases significantly with the content of latex increasing. The macroscopic properties are closely related to the dispersion of graphene nanosheets in the as-prepared nanocomposites. Our present research provides a promising approach to fabricate non-polar polymer/graphene nanocomposites with excellent dispersion state of graphene and high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Lee C, Wei X, Kysar JW (2008) J Hone Sci 321:385

    Article  CAS  Google Scholar 

  3. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Macromol Rapid Commun 30:316

    Article  CAS  Google Scholar 

  4. Kim H, Macosko CW (2009) Polymer 50:3797

    Article  CAS  Google Scholar 

  5. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Adv Funct Mater 19:2297

    Article  CAS  Google Scholar 

  6. Zhou T, Chen F, Tang C, Bai H, Zhang Q, Deng H, Fu Q (2011) Compos Sci Technol 71:1266

    Article  CAS  Google Scholar 

  7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282

    Article  CAS  Google Scholar 

  8. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Langmuir 24:10560

    Article  CAS  Google Scholar 

  9. Lin Y, Jin J, Song M (2011) J Mater Chem 21:3455

    Article  CAS  Google Scholar 

  10. Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Compos Sci Technol 77:87

    Article  CAS  Google Scholar 

  11. Milani MA, González D, Quijada R, Basso NRS, Cerrada ML, Azambuja DS, Galland GB (2013) Compos Sci Technol 84:1

    Article  CAS  Google Scholar 

  12. Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Macromolecules 41:1905

    Article  CAS  Google Scholar 

  13. Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM (2010) Polymer 51:5525

    Article  CAS  Google Scholar 

  14. Li N, Wang K, Zhang Q, Fu Q (2014) Polym Compos. doi:10.1002/pc.22853

    Google Scholar 

  15. Li N, Cheng W, Ren K, Luo F, Wang K, Fu Q (2013) Chin J Polym Sci 31:98

    Article  CAS  Google Scholar 

  16. Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) J Mater Chem 20:3035

    Article  CAS  Google Scholar 

  17. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Polymer 52:4001

    Article  CAS  Google Scholar 

  18. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  19. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  20. Xu Y, Bai H, Lu G, Li C, Shi G (2008) J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  21. Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, Fu Q (2011) J Mater Chem 21:8612

    Article  CAS  Google Scholar 

  22. Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu Z, Gentle I, Lu GQ, Cheng H (2009) ACS Nano 3:1745

    Article  CAS  Google Scholar 

  23. Kim H, Macosko CW (2008) Macromolecules 41:3317

    Article  CAS  Google Scholar 

  24. Du XS, Xiao M, Meng YZ, Hay AS (2005) Carbon 43:195

    Article  CAS  Google Scholar 

  25. Zheng WG, Wong SC, Sue HJ (2002) Polymer 43:6767

    Article  CAS  Google Scholar 

  26. Chen GH, Wu DJ, Weng WG, He B, Yan WL (2001) Polym Int 50:980

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from NSFC (51373108), the Ministry of Education of China (NCET-11-0348), the Science & Technology Department of Sichuan Province (2013TD0013), and Sichuan University (2011SCU04A12) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Li, N., Wang, K. et al. Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites. Colloid Polym Sci 293, 1495–1503 (2015). https://doi.org/10.1007/s00396-015-3526-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3526-7

Keywords

Navigation