Skip to main content
Log in

Modification of PEN and PET film surfaces by plasma treatment and layer-by-layer assembly of polyelectrolyte multilayer thin films

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The surfaces of polyethylene naphthalate and polyethylene terephthalate films were modified by plasma treatment, layer-by-layer (LbL) assembly of polyelectrolyte multilayer thin films and subsequent deposition of SiO2 particles. Plasma treatment rendered the film surfaces hydrophilic and led to the formation of fibrillar patterns. The plasma-treated film surfaces were compatible with multilayers acquired via LbL assembly, and the outer adsorbed polyelectrolyte layer determined the charge of the multilayer surfaces. Negatively charged SiO2 particles were adsorbed to the positively charged surface of the multilayers. This process is potentially applicable to surface modifications of polymer materials by charged compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beak BD, Ling JSG, Legget GJ (1998) Scanning force microscopy investigation of poly (ethylene terephthalate) modified by argon plasma treatment. J Mater Chem 8:1735–1742

    Article  Google Scholar 

  2. Powell HM, Lannutti JJ (2003) Nanofibrillar surfaces via reactive ion etching. Langmuir 19:9071–9078

    Article  CAS  Google Scholar 

  3. Teshima K, Sugimura H, Inoue Y, Takai O, Takanao A (2003) Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir 19:10624–10627

    Article  CAS  Google Scholar 

  4. Gonzalez E II, Barankin MD, Guschl PC, Hicks RF (2008) Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate. Langmuir 24:12636–12643

    Article  CAS  Google Scholar 

  5. Wohlfart E, F-Blazquez JP, Knoche E, Bello A, Perez E, Arzt E, del Campo A (2010) Nanofibrillar patterns on PET: the influence of plasma parameters in surface morphology. Macromolecules 43:9908–9917

    Article  CAS  Google Scholar 

  6. Fleischman MS, Lee BS, R-Santiago V, Chhasatia V, Sun Y, Pappas DD (2012) Hybrid method involving atmospheric plasma treatment and inkjet deposition for the development of conductive patterns on flexible polymers. Surf Coat Technol 206:3923–3930

    Article  CAS  Google Scholar 

  7. Yang GH, Kang ET, Neoh KG (2001) Surface graft copolymerization of poly(tetrafluoroethylene) films with N-containing vinyl monomers for the electroless plating of copper. Langmuir 17:211–218

    Article  CAS  Google Scholar 

  8. Farhan T, Huck WTS (2004) Synthesis of patterned polymer brushes from flexible polymeric films. Eur Polym J 40:1599–1604

    Article  CAS  Google Scholar 

  9. Yang P, Yang W (2014) Hydroxylation of organic polymer surface: method and application. ACS Appl Mate Interfaces 6:3759–3770

    Article  CAS  Google Scholar 

  10. Kim Y-J, Taniguchi Y, Murase K, Taguchi Y, Sugimura H (2009) Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl Surf Sci 255:3648–3654

    Article  CAS  Google Scholar 

  11. Nie H-Y, Walzak MJ, Berno B, McIntyre NS (1999) Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force. Appl Surf Sci 144–145:627

    Article  Google Scholar 

  12. Ayres N (2010) Polymer brushes: applications in biomaterials and nanotechnology. Polym Chem 1:769–777

    Article  CAS  Google Scholar 

  13. Ohno K, Kayama Y, Ladmiral V, Fukuda T, Tsujii Y (2010) A versatile method of initiator fixation for surface-initiated living radical polymerization on polymeric substrates. Macromolecules 43:5569–5574

    Article  CAS  Google Scholar 

  14. Kimura M, Yamagiwa H, Asakawa D, Noguchi M, Kurashina T, Fukawa T, Shirai H (2010) Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes. ACS App Mate Interface 2:3714–3717

    Article  CAS  Google Scholar 

  15. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(211):831–835

    Article  Google Scholar 

  16. Wang TC, Chen B, Rubner MF, Cohen RE (2001) Selective electroless nickel plating on polyelectrolyte multilayer platforms. Langmuir 17:6610–6615

    Article  CAS  Google Scholar 

  17. Lee I (2013) Molecular self-assembly: smart design of surface and interface via secondary molecular interactions. Langmuir 29:2476–2489

    Article  CAS  Google Scholar 

  18. Lvov Y, Ariga K, Onda M, Ichionose I, Kunitake T (1997) Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir 13:6195–6203

    Article  CAS  Google Scholar 

  19. Caruso F, Lichtenfeld H, Giersig M, Mohwald H (1998) Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120:8523–8524

    Article  CAS  Google Scholar 

  20. Wang F, Peters S, Guzda J, Blunk RH, Angelopoulos AP (2009) Silica nanoparticle layer-by-layer assembly on gold. Langmuir 25:4384–4392

    Article  CAS  Google Scholar 

  21. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–1841

    Article  CAS  Google Scholar 

  22. Friebe A, Ulbrich M (2007) Controlled pore functionalization of poly(ethylene terephthalate) track-etched membranes via surface-initiated atom transfer radical polymerization. Langmuir 23:10316–10322

    Article  CAS  Google Scholar 

  23. Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30:78–86

    Article  CAS  Google Scholar 

  24. Hagen DA, Foster B, Stevens B, Grunlan C (2014) Shift-time polyelectrolyte multilayer assembly: fast film growth and high gas barrier with fewer layers by adjusting deposition time. ACS Macro Lett 3:663–666

    Article  CAS  Google Scholar 

  25. It is considered that residual air forms oxygen and nitrogen plasma in the vacuum plasma apparatus chamber, and then oxygen and nitrogen atoms are introduced to the polymer surface.

  26. Richards RR, Rogowski RS (1974) Thermally stimulated chemiluminescence in photo-oxidized poly(ethylene 2,6-naphthalene dicarboxylate). J Polym Sci Part B: Polym Phys 12:89–96

    CAS  Google Scholar 

  27. Allen NS, Mckellar JF (1978) Photochemical reactions in commercial poly(ethylene 2,6-naphthalate). J Appl Polym Sci 22:2085–2092

    Article  CAS  Google Scholar 

  28. Watanabe M, Nakamura Y, Shinagawa T, Watase S, Tamai T, Nishioka N, Matsukawa K (2013) Highly c-axis oriented deposition of zinc oxide on an ITO surface modified by layer-by-layer method. Electrochim Acta 96:237–242

    Article  CAS  Google Scholar 

  29. Tamai T, Ichinose N, Kawanishi S, Mizuno K (2000) Photochemical oxygenation and cross-linking of poly(4-trimethylsilylmethylstyrene) thin film by UV irradiation. Macromolecules 33:2881–2886

    Article  CAS  Google Scholar 

  30. Tamai T, Watanabe M, Ikeda S, Kobayashi Y, Fujiwara Y, Matsukawa K (2012) A Pd nanoparticle/silica nanoparticle/acrylic polymer hybrid layer for direct electroless copper deposition on a polymer substrate. Chem Lett 41:277–279

    Article  CAS  Google Scholar 

  31. Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M (2012) Layer-by-layer assembly through weak interactions and their biomedical applications. Adv Mater 24:454–474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a Grant-in-Aid for Scientific Research (C) (25410135) from the MEXT of Japan. We would also like to thank Nissan Chemical Co., Ltd. for a gift of colloidal silica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Tamai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 13722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamai, T., Watanabe, M. & Mitamura, K. Modification of PEN and PET film surfaces by plasma treatment and layer-by-layer assembly of polyelectrolyte multilayer thin films. Colloid Polym Sci 293, 1349–1356 (2015). https://doi.org/10.1007/s00396-015-3518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3518-7

Keywords

Navigation