Colloid and Polymer Science

, Volume 293, Issue 5, pp 1409–1423 | Cite as

Influence of solvent chemistry on 1H NMR spectral and relaxation properties of a long-chain ionic surfactant in chloroform-d

  • Michael A. Desando
  • Gojmir Lahajnar
  • Miha Friedrich
  • Janez Plavec
  • Gašper Tavčar
Original Contribution


1H NMR chemical shift, line width, indirect nuclear splitting value, peak area integration value, and spin–lattice and spin–spin relaxation times at 298 K are compared for low-concentration isotropic solutions of n-octylammonium n-octadecanoate prepared via different techniques and conditions using dried, distilled, and degassed deuterochloroform and the nontreated solvent containing tetramethylsilane. The nature of the variation of observed spectral parameters and relaxation/rotational behavior with chemical composition (presence of oxygen and other paramagnetic species, stabilizer, impurities, and degradation products) of the solvent, history of the solution, and sample containment are analyzed. Relaxation times are interpreted in terms of monomer structure and reorientation and internal rotation modes as a function of atomic position along the n-alkyl chains. Collectively, the relaxation behavior of the surfactant complies with the two-step model of fast picosecond internal rotations of different size segments containing methylene groups separated in timescale from slower large segment and overall molecular tumbling modes of the monomer. Fast motional phenomena do not appear to be appreciably influenced by the chemistry of the solvent in contrast to spectral parameters such as chemical shift and line width of the labile ammonium protons. A model is also presented to explain anomalous variation of the peak area integration value with chemical shift of the ammonium resonance peak.


n-Octylammonium n-octadecanoate surfactant 1H NMR spin relaxation NMR spectral properties Reverse micelle Deuterochloroform chemistry 



We wish to express our grateful appreciation to Professor Dr. Janez Scancar (Department of Environmental Sciences, Jožef Stefan Institute) for the preparation and analysis of a sample of deuterochloroform by ICP-MS spectrometry. M.A. Desando wishes to thank Dr. Stanley Walker (Professor Emeritus, Department of Chemistry, Lakehead University, Thunder Bay, Canada) for the permission to use for further study a sample of surfactant synthesized by the author.


  1. 1.
    Pileni M-P (2003) Nat Mater 2:145–150CrossRefGoogle Scholar
  2. 2.
    Eastoe J, Hollamby MJ, Hudson L (2006) Adv Colloid Interface Sci 128–130:5–15CrossRefGoogle Scholar
  3. 3.
    Fendler JH, Fendler EH (1975) Catalysis in micellar and macromolecular systems. Academic, New YorkGoogle Scholar
  4. 4.
    Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  5. 5.
    Clover AM (1923) J Am Chem Soc 45:3133–3138CrossRefGoogle Scholar
  6. 6.
    Desando MA, Lahajnar G, Sepe A (2010) J Colloid Interface Sci 345:338–345CrossRefGoogle Scholar
  7. 7.
    Vahcic M, Milacic R, Scancar J (2011) Anal Chim Acta 694:21–30CrossRefGoogle Scholar
  8. 8.
    Lu X, Winnik MA (2001) Chem Mater 13:3449–3463CrossRefGoogle Scholar
  9. 9.
    Della Guardia L, King AD Jr (1982) J Colloid Interface Sci 88:8–16CrossRefGoogle Scholar
  10. 10.
    Yushmanov VE, Tabak M (1997) J Colloid Interface Sci 191:384–390CrossRefGoogle Scholar
  11. 11.
    Nechypor OV, Gun’ko VM, Barvinchenko VN, Turov VV (2006) Biopolymers Cell 22:375–383CrossRefGoogle Scholar
  12. 12.
    Kupka T (2008) Magn Reson Chem 46:851–858CrossRefGoogle Scholar
  13. 13.
    Seno M, Araki K, Shiraishi S (1976) Bull Chem Soc Jpn 49:899–903CrossRefGoogle Scholar
  14. 14.
    Hoffmann MM, Conradi MS (1997) J Am Chem Soc 119:3811–3817CrossRefGoogle Scholar
  15. 15.
    Bumajdad A, Madkour M, Shaaban E, El Seoud OA (2013) J Colloid Interface Sci 393:210–218CrossRefGoogle Scholar
  16. 16.
    Gibby CW, Hall J (1931) J Chem Soc 691Google Scholar
  17. 17.
    Desando MA, Walker S, Calderwood JH (1985) J Mol Liq 31:123–133CrossRefGoogle Scholar
  18. 18.
    Desando MA, Mallard C, Walker S (1988) J Mol Liq 37:167–179CrossRefGoogle Scholar
  19. 19.
    Fendler EJ, Fendler JH, Medary RT, El Seoud OA (1973) J Phys Chem 77:1432–1436CrossRefGoogle Scholar
  20. 20.
    Becker ED (1980) High resolution NMR: theory and chemical applications, 2nd edn. Academic, New YorkGoogle Scholar
  21. 21.
    Desando MA, Ripmeester JA (2002) Fuel 81:1305–1319CrossRefGoogle Scholar
  22. 22.
    Burfield DR, Lee K-H, Smithers RH (1977) J Org Chem 42:3060–3065CrossRefGoogle Scholar
  23. 23.
    MacDonald DI, Boyack JR (1969) J Chem Eng Data 14:380–384CrossRefGoogle Scholar
  24. 24.
    Hu X (1997) Separation Sci Technol 32:2039–2050Google Scholar
  25. 25.
    Desando MA (1981) Ph.D. Thesis, Dielectric and nuclear magnetic resonance studies of relaxation and micellization in alkylammonium carboxylate surfactant systems, University of SalfordGoogle Scholar
  26. 26.
    Heo GS, Bartsch RA (1982) J Org Chem 47:3557–3559CrossRefGoogle Scholar
  27. 27.
    Drobny JG (2006) Fluoroplastics Rapra Rev Rep Rep 184:16Google Scholar
  28. 28.
    Dupont (Jan. 2001) Teflon® Finishes in the chemical processing industry, permeation—its effects on fluoropolymer coatings, Technical Information Bulletin H-88495, pp 1-11Google Scholar
  29. 29.
    Huibers PDT (1999) Langmuir 15:7546–7550Google Scholar
  30. 30.
    Lin J-H, Chen W-S, Hou S-S (2013) J Phys Chem B 117:12076–12085CrossRefGoogle Scholar
  31. 31.
    Karplus M (1963) J Am Chem Soc 85:2870–2871CrossRefGoogle Scholar
  32. 32.
    Phillips L (1976) Nuclear magnetic resonance (n.m.r.) spectroscopy, In: Straughan BP and Walker S (eds), Chapman and Hall, London, vol. 1, pp 110-174Google Scholar
  33. 33.
    Emsley JW, Feeney J, Sutcliffe LH (1966) High resolution nuclear magnetic resonance spectroscopy. Pergamon, London, vol. 2, p 678Google Scholar
  34. 34.
    De Proft F, Langenaeker W, Geerlings P (1993) J Phys Chem 97:1826–1831CrossRefGoogle Scholar
  35. 35.
    Farrar TC, Becker ED (1971) Pulse and fourier transform NMR: introduction to theory and methods. Academic, New YorkGoogle Scholar
  36. 36.
    Mirhej ME (1965) Can J Chem 43:1130–1138CrossRefGoogle Scholar
  37. 37.
    Battino R, Rettich TR, Tominaga T (1983) J Phys Chem Ref Data 12:163–178CrossRefGoogle Scholar
  38. 38.
    Yang XY, Chen H, Cheng GZ, Mao SZ, Liu ML, Luo PY, Du YR (2008) Colloid Polym Sci 286:639–646CrossRefGoogle Scholar
  39. 39.
    Anselmi C, Centini M, Scotton M, Sega A (1991) Can J Chem 69:913–918CrossRefGoogle Scholar
  40. 40.
    Oda R, Huc I, Candau SJ (1998) Agnew Chem Int Ed 37:2689–2691CrossRefGoogle Scholar
  41. 41.
    Shultz MD, Calvin S, Fatouros PP, Morrison SA, Carpenter EE (2007) J Magnetism Magnet Mat 311:464–468CrossRefGoogle Scholar
  42. 42.
    Fanum M (ed) (2010) Colloids in drug delivery, surfactant science series, CRC, Boca Raton FL, vol 148Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael A. Desando
    • 1
    • 6
  • Gojmir Lahajnar
    • 1
  • Miha Friedrich
    • 3
  • Janez Plavec
    • 4
    • 5
  • Gašper Tavčar
    • 2
  1. 1.Solid State Physics DepartmentJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Inorganic Chemistry and TechnologyJožef Stefan InstituteLjubljanaSlovenia
  3. 3.EN-FIST Centre of ExcellenceLjubljanaSlovenia
  4. 4.Slovenian NMR CentreNational Institute of ChemistryLjubljanaSlovenia
  5. 5.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  6. 6.Thunder BayCanada

Personalised recommendations