Skip to main content
Log in

Gelation behavior and thermal and mechanical properties of polymer network formed by the Diels-Alder reaction of furan- and maleimide-terminated four-arm star-shaped ethylene glycol oligomers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Furan-terminated four-arm star-shaped ethylene glycol oligomer (F4EGO n ) was synthesized by the esterification reaction of furfuryl alcohol and succinate-terminated four-arm star-shaped ethylene glycol oligomer (S4EGO n ) which was prepared by the reaction of succinic anhydride and hydroxy-terminated four-arm star-shaped ethylene glycol oligomer (H4EGO n ) having the approximate degree of polymerization per one oligo(ethylene glycol) chain, n = 4 or 11. Also, maleimide-terminated four-arm star-shaped ethylene glycol oligomer (M4EGO n ) was synthesized by the reaction of H4EGO n and 4-(maleimidophenyl)isocyanate. Solutions of F4EGO4/M4EGO4 and F4EGO11/M4EGO11 in 1,4-dioxane (DOX) or N,N-dimethylformamide (DMF) displayed thermo-reversible sol-gel transitions by the repeated Diels-Alder (DA) reactions at room temperature and retro DA reaction at 80 °C. Although F4EGO4/M4EGO4 was insoluble in water-containing solvents, F4EGO11/M4EGO11 was soluble in DMF/water or DOX/water 1/1, and the solution showed a sol-gel transition but only once or twice. Fourier transform infrared (FT-IR) analysis revealed that the conversion of DA reaction for the F4EGO n /M4EGO n (n = 4 or 11) film dried at 50 °C (F4EGO n -M4EGO n ) was 87 % (n = 4) or 90 % (n = 11). The glass transition temperature and tensile strength of F4EGO4-M4EGO4 were higher than those of F4EGO11-M4EGO11. Both F4EGO4-M4EGO4 and F4EGO11-M4EGO11 were swellable to water, DOX/water 1/1, or DMF/water 1/1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702

    Article  CAS  Google Scholar 

  2. Liu YL, Hsieh CY (2006) Crosslinked epoxy materials exhibiting thermal remendability and removability from multifunctional maleimide and furan compounds. J Polym Sci Part A Polym Chem 44(2):905–913

    Article  CAS  Google Scholar 

  3. Yoshie N, Watanabe M, Araki H, Ishida K (2010) Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide. Polym Degrad Stabl 95(5):826–829

    Article  CAS  Google Scholar 

  4. Canadell J, Fischer H, With GD, Benthem RATMV (2010) Stereoisomeric effects in thermo-remendable polymer networks based on Diels–Alder crosslink reactions. J Polym Sci Part A Polym Chem 48(15):3456–3467

    Article  CAS  Google Scholar 

  5. Goiti E, Huglin MB, Rego JM (2004) Some properties of networks produced by the Diels–Alder reaction between poly(styrene-co-furfuryl methacrylate) and bismaleimide. Eur Polym J 40(2):219–226

    Article  CAS  Google Scholar 

  6. Goiti E, Heatley F, Huglin MB, Rego JM (2004) Kinetic aspects of the Diels–Alder reaction between poly(styrene-co-furfuryl methacrylate) and bismaleimide. Eur Polym J 40(7):1451–1460

    Article  CAS  Google Scholar 

  7. Liu YL, Hsieh CY, Chen YW (2006) Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer 47(8):2581–2586

    Article  CAS  Google Scholar 

  8. Wei HL, Yang Z, Zheng LM, Shen YM (2009) Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer 50(13):2836–2840

    Article  CAS  Google Scholar 

  9. Wei HL, Yang Z, Chen Y, Chu HJ, Zhu J, Li ZC (2010) Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels–Alder click reaction in water. Eur Polym J 46(5):1032–1039

    Article  CAS  Google Scholar 

  10. Wei HL, Yang Z, Chu HJ, Zhu J, Li ZC, Cui JS (2010) Facile preparation of poly(N-isopropylacrylamide)-based hydrogels via aqueous Diels–Alder click reaction. Polymer 51(8):1694–1702

    Article  CAS  Google Scholar 

  11. Wei HL, Yang J, Chu HJ, Yang Z, Ma CC, Yao K (2011) Diels–Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. J Appl Polym Sci 120(2):974–980

    Article  CAS  Google Scholar 

  12. Nimmo CM, Owen SC, Shoichet MS (2011) Diels–Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12(3):824–830

    Article  CAS  Google Scholar 

  13. Watanabe M, Yoshie N (2006) Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer 47(14):4967–52

    Article  Google Scholar 

  14. Shibata M, Teramoto N, Akiba T, Ogihara M (2011) High-performance hybrid materials prepared by the thermo-reversible Diels-Alder polymerization of furfuryl ester-terminated butylene succinate oligomers and maleimide compounds. Polym J 43(5):455–463

    Article  CAS  Google Scholar 

  15. Zheng C, Seino H, Ren J, Yoshie N (2014) Polymers with multishape controlled by local glass transition temperature. Appl Mater Interfaces 6(4):2753–2758

    Article  Google Scholar 

  16. Gandini A (2013) The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis. Prog Polym Sci 38(1):1–29

    Article  CAS  Google Scholar 

  17. Inoue K (2000) Functional dendrimers, hyperbranches and star polymers. Prog Polym Sci 25:453–471

    Article  CAS  Google Scholar 

  18. Cameron DJA, Shaver MP (2011) Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chem Soc Rev 40:1761–1776

    Article  CAS  Google Scholar 

  19. Adzima BJ, Aguirre HA, Kloxin CJ, Scott TF, Bowman CN (2008) Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 41(23):9112–9117

    Article  CAS  Google Scholar 

  20. Inoue K, Yamashiro M, Iji M (2009) Recyclable shape-memory polymer: poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. J Appl Polym Sci 112(2):876–885

    Article  CAS  Google Scholar 

  21. Defize T, Riva R, Jérôme C, Alexandre M (2012) Multifunctional poly(ɛ-caprolactone)-forming networks by Diels-Alder cycloaddition: effect of the adduct on the shape-memory properties. Macromol Chem Phycs 213(2):187–197

    Article  CAS  Google Scholar 

  22. Ikeda T, Oikawa D, Shimasaki T, Teramoto N, Shibata M (2013) Organogelation behavior, thermal and mechanical properties of polymer network formed by the Diels-Alder reaction of furan- and maleimide-terminated four-arm star-shaped ɛ-caprolactone oligomers. Polymer 54(13):3206–3216

    Article  CAS  Google Scholar 

  23. Koehler KC, Anseth KS, Bowman CN (2013) Diels-Alder mediated controlled release from a poly(ethylene glycol) base hydrogel. Biomacromolecules 14(2):538–547

    Article  CAS  Google Scholar 

  24. Acharya AS, Manjula BN, Smith PK. Hemoglobin crosslinkers. US Patent 5,585,484, 1996

  25. Nijenhuis AJ, Colstee E, Gripma DW, Pennings AJ (1996) High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer 37(26):5849–5857

    Article  CAS  Google Scholar 

  26. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615

    CAS  Google Scholar 

  27. Zhang X, Li ZC, Li KB, Lin S, Du FS, Li FM (2006) Donor/acceptor vinyl monomers and their polymers: synthesis, photochemical and photophysical behavior. Prog Polym Sci 31(10):893–48

    Article  CAS  Google Scholar 

  28. Engberts JBFN, Fernández E, García-Río L, Leis JR (2006) Water in oil microemulsions as reaction media for a Diels-Alder reaction between N-ethylmaleimide and cyclopentadiene. J Org Chem 71:4111–4117

    Article  CAS  Google Scholar 

  29. Furlani TR, Gao J (1996) Hydrophobic and hydrogen-bonding effects on the rate of Diels-Alder reactions in aqueous solution. J Org Chem 61:5492–5497

    Article  CAS  Google Scholar 

  30. Shibata M, Teramoto N, Imada A, Neda M, Sugimoto S (2013) Bio-based thermosetting bismaleimide resins using eugenol, bieugenol and eugenol novolac. React Fumct Polym 73:1086–1095

    Article  CAS  Google Scholar 

  31. Neda M, Okinaga K, Shibata M (2014) High-performance bio-based thermosetting resins based on bismaleimide and allyl-etherified eugenol derivatives. Mater Chem Phys 148:319–327

    Article  CAS  Google Scholar 

  32. Nakamura T, Chu X, Shimasaki T, Shibata M (2013) Organogelation behavior and thermal properties of supramolecular polymer network composed of carboxy- and pyridyl-terminated 4-arm star-shaped ε-caprolactone oligomers. J Colloid Interface Sci 404(15):8–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, Y., Oikawa, D., Shimasaki, T. et al. Gelation behavior and thermal and mechanical properties of polymer network formed by the Diels-Alder reaction of furan- and maleimide-terminated four-arm star-shaped ethylene glycol oligomers. Colloid Polym Sci 293, 1059–1071 (2015). https://doi.org/10.1007/s00396-014-3492-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3492-5

Keywords

Navigation