Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions

Abstract

Chemically cross-linked composite gels based on bentonite clay from Manyrak deposit (Kazakhstan Republic) and nonionic polymers, i.e., poly(hydroxyethylacrylate) and poly(acrylamide), were polymerized in situ after preliminary intercalation of monomers in an aqueous suspension of bentonite clay. By means of cryo-scanning electron microscopy, it was shown that bentonite clay is well incorporated into the gel network structure with pore sizes up to 1.5 μm. The intercalated bentonite clay can adsorb cationic surfactants as well as heavy metal ions due to electrostatic interactions. Conductometric and surface tension measurements indicate not only the adsorption of surfactants and heavy metals inside the hydrogel, but also the displacement of the critical micellization concentration (CMC) of the surfactants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Costa M (2003) Reg Toxicol Pharmacol 188:1

    CAS  Google Scholar 

  2. 2.

    Monser L, Adhoum N (2002) Sep Purif Technol 26:137

    CAS  Article  Google Scholar 

  3. 3.

    Hafeza A, El-Mariharawy S (2004) Desalination 165:141

    Article  Google Scholar 

  4. 4.

    Rengaraj S, Joo CK, Kim Y, Yi J (2003) J Hazard Mater 102:257

    CAS  Article  Google Scholar 

  5. 5.

    Zhang D, Wie S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z (2010) Nanoscale 2:917

    CAS  Article  Google Scholar 

  6. 6.

    Sharma YC, Singh B, Agrawal A, Weng CH (2008) J Hazard Mater 151:789

    CAS  Article  Google Scholar 

  7. 7.

    Larraza I, Lopez-Gonzalez M, Corrales T, Marcelo G (2012) J Colloid Interface Sci 385:24

    CAS  Article  Google Scholar 

  8. 8.

    Kandile NG, Nasr AS (2009) Carbohydr Polym 78:753

    CAS  Article  Google Scholar 

  9. 9.

    Zhou Y, Jin Q, Zhu T, Akama Y, Hazard J (2011) Materials 187:303

    CAS  Google Scholar 

  10. 10.

    Ghoul M, Bacquet M, Morcellet M (2003) Water Res 729

  11. 11.

    Deng SB, Ting YP (2005) Water Res 39:2167

    CAS  Article  Google Scholar 

  12. 12.

    Kiraly Z, Veisz B, Mastalir A, Kofarago G (2001) Langmuir 17:5381

    CAS  Article  Google Scholar 

  13. 13.

    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539

    CAS  Article  Google Scholar 

  14. 14.

    Trindade AF, Gois PMP, Afonso CAM (2009) Chem Rev 109:418

    CAS  Article  Google Scholar 

  15. 15.

    Usuki A, Hasegawa N, Kadoura H, Okamoto T (2001) Nano Lett 1:271

    CAS  Article  Google Scholar 

  16. 16.

    Olphen HV, Hsu PH (1978) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  17. 17.

    Chou CC, Chang YC, Chiang ML, Lin JJ (2004) Macromolecules 37:473

    CAS  Article  Google Scholar 

  18. 18.

    Park JH, Karim MR, Kim IK, Cheong IW, Kim JW, Bae DG, Cho JW, Yeum JH (2010) Colloid Polym Sci 288:115

    CAS  Article  Google Scholar 

  19. 19.

    Urbano BF, Rivas BL (2014) J Chem Technol Biotechnol 89:249

    CAS  Article  Google Scholar 

  20. 20.

    Kim SH, Park SH, Kim SC (2005) Polym Bull 53(4):285

    CAS  Article  Google Scholar 

  21. 21.

    Iminova RS, Zhumagalieva SN, Beisebekov MK, Abilov ZA, Mun GA (2009) Eurasian Chem-Tech J 11(3):213

    CAS  Google Scholar 

  22. 22.

    Oral A, Tasdelen MA, Demirel AL, Yagci Y (2009) Polymer 50(16):3905

    CAS  Article  Google Scholar 

  23. 23.

    Huskic M, Zagar E, Zigon M (2012) Europ Polym J 48(9):1555

    CAS  Article  Google Scholar 

  24. 24.

    Salo DP (1968) Using the clay minerals for preparation drug compounds Dissertation, Moscow State University

  25. 25.

    Evsikova ОV, Starodubtsev SG, Hohlov АR (2002) Visokomol Soed 44(5):802

    CAS  Google Scholar 

  26. 26.

    Dolya N, Rojas O, Kosmella S, Tiersch B, Koetz J, Kudaibrgenov S (2013) Macromol Chem Phys 214:1114

    CAS  Article  Google Scholar 

  27. 27.

    Wohl-Bruhn S, Badar M, Berts A, Tiersch B, Koetz J, Muller PP, Menzel H, Bunjes H (2012) J Controlled Release 162:127

    Article  Google Scholar 

  28. 28.

    Bertz A, Wohl-Bruhn S, Miete S, Tiersch B, Koetz J, Hust M, Bunjes H, Menzel H (2012) J Biotechnol 163:243

    Article  Google Scholar 

  29. 29.

    Kötz J, Kosmella S (1994) J Colloid Interface Sci 168:505

    Article  Google Scholar 

  30. 30.

    Evans DF, Wennerström H (eds) (1994) The colloidal domain where physics, chemistry, biology, and technology meet. VCH Publishers Inc, New York

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Brigitte Tiersch and Sibylle Rüstig (Universität Potsdam) for the SEM micrographs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Koetz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beisebekov, M.M., Serikpayeva, S.B., Zhumagalieva, S.N. et al. Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions. Colloid Polym Sci 293, 633–639 (2015). https://doi.org/10.1007/s00396-014-3463-x

Download citation

Keywords

  • Bentonite clay
  • Cationic surfactants
  • Heavy metal ions
  • Composite hydrogels